• Title/Summary/Keyword: flight tests

Search Result 439, Processing Time 0.02 seconds

Airborne Pulsed Doppler Radar Development (비행체 탑재 펄스 도플러 레이다 시험모델 개발)

  • Kwag, Young-Kil;Choi, Min-Su;Bae, Jae-Hoon;Jeon, In-Pyung;Yang, Ju-Yoel
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system of the aircraft to perform various missions in all weather environments. This paper presents the design, development, and test results of the multi-mode pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRU units, which include ANTU(Antenna Unit), TRU(Tx Rx Unit), RSDU(Radar Signal & Data Processing Unit) and DISU(Display Unit). The developed technologies include the TACCAR processor, planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, DSP based Doppler FFT filtering, adaptive CFAR, IMU, and tracking capability. The design performance of the developed radar system is verified through various helicopter-borne field tests including MTD (Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

  • PDF

Design and Integration of a Dual Redundancy Air Data System for Unmanned Air Vehicles (무인항공기 이중화 대기자료시스템 설계 및 통합 연구)

  • Won, Dae-Yeon;Yun, Seonghun;Lee, Hongju;Hong, Jin-Sung;Hwang, Sun-Yu;Lim, Heung-Sik;Kim, Taekyeum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.639-649
    • /
    • 2020
  • Air data systems measure airspeed, pressure altitude, angle of attack and angle of sideslip. These measurements are essential for operating flight control laws to ensure safe flights. Since the loss or corruption of air data measurements is considered as catastrophic, a high level of operational reliability needs to be achieved for air data systems. In the case of unmanned air vehicles, failure of any of air data sensors is more critical due to the absence of onboard pilot decision aid. This paper presents design of a dual redundancy air data system and the integration process for an unmanned air vehicle. The proposed dual-redundant architecture is based on two independent air data probes and redundancy management by central processing in two independent flight control computers. Starting from unit testing of single air data sensor, details are provided of system level tests used to meet overall requirements. Test results from system integration demonstrate the efficiency of the proposed process.

Structural Test for Assembly Frame of Payload Fairing (페이로드 페어링 체결 프레임에 대한 구조시험)

  • Lee, Jong-Woong;Jang, Young-Soon;Yi, Yeong-Moo;Kong, Cheol-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1129-1134
    • /
    • 2007
  • Payload fairing protects satellites and electrical equipments from the external environment. Payload fairing is jettisoned before satellite separation. Assembly frame for the separation of payload fairing were assembled with shear bolts. The role of shear bolts is to support structural load during flight and they are cut by explosion of pyro. The assembly frame which is connected by shear bolts is separated after the cutting of shear bolts. In this paper, structural tests and analysis were done for the design of the shear bolt. Compression, bending and shear load apply to the hardware including assembly frame. Test results showed that design of the shear bolt satisfied both structural strength for the support of flight load and required low strength for the cutting of shear bolts.

Characterization of Particulate Emissions from Biodiesel using High Resolution Time of Flight Aerosol Mass Spectrometer

  • Choi, Yongjoo;Choi, Jinsoo;Park, Taehyun;Kang, Seokwon;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.78-85
    • /
    • 2015
  • In the past several decades, biofuels have emerged as candidates to help mitigate the issues of global warming, fossil fuel depletion and, in some cases, atmospheric pollution. To date, the only biofuels that have achieved any significant penetration in the global transportation sector are ethanol and biodiesel. The global consumption of biodiesel was rapidly increased from 2005. The goal of this study was to examine the chemical composition on particulate pollutant emissions from a diesel engine operating on several different biodiesels. Tests were performed on non-road diesel engine. Experiments were performed on 5 different fuel blends at 2 different engine loading conditions (50% and 75%). 5 different fuel blends were ultra-low sulfur diesel (ULSD, 100%), soy biodiesel (Blend 20% and Blend 100%) and canola biodiesel (Blend 20% and Blend 100%). The chemical properties of particulate pollutants were characterized using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Organic matter and nitrate were generally the most abundant aerosol components and exhibited maximum concentration of $1207{\mu}g/m^3$ and $30{\mu}g/m^3$, respectively. On average, the oxidized fragment families ($C_xH_yO_1{^+}$, and $C_xH_yO_z{^+}$) account for ~13% of the three family sum, while ~87% comes from the $C_xH_y{^+}$ family. The two peaks of $C_2H_3O_2$ (m/z 59.01) and $C_3H_7O$ (m/z 59.04) located at approximately m/z 59 could be used to identify atmospheric particulate matter directly to biodiesel exhaust, as distinguished from that created by petroleum diesel in the AMS data.

Flight Dynamic Identification of a Model Helicopter Using CIFER® (III) - Transfer Function Analysis - (CIFER ® 를 이용한 무인 헬리콥터의 동특성 분석 (III) - 전달함수 해석 -)

  • Bae, Yeong-Hwan;Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.192-200
    • /
    • 2012
  • Purpose: Aerial application of chemicals with an agricultural helicopter allows for precise and timely spraying and reduces working labor and pollution. An attitude controller for an agricultural helicopter would be helpful to aerial application operator. The objectives of this paper are to determine the transfer function models and to estimate the handling qualities of a bare-airframe model helicopter. Methods: Transfer functions of a model unmanned helicopter were estimated by using NAVFIT and DERIVID modules of the $CIFER^{(R)}$ program to the time history data of frequency sweep flight tests. Control inputs of the transfer functions were elevator, aileron, rudder and collective pitch stick positions and the outputs were resulting on-axis movements of the fuselage. Results: Minimum realization of the transfer functions for pitch rate output to elevator control input and roll rate output to aileron control input produced second order transfer functions with undamped natural frequencies around 3.0 Hz and damping ratios of 0.139 and 0.530, respectively. The equivalent time delays of the transfer functions ranged from 0.16 to 0.44 second. Sensitivity analysis of the proposed parameters allowed derivation of minimal realization of the transfer functions. Conclusions: Handling quality of the model helicopter was addressed based on the eigenvalues of the transfer functions, corresponding undamped natural frequencies with damping ratios. The equivalent time delays of the lateral-directional motion ranged from 0.16 to 0.44 second, longer than the 0.1 to 0.15 second requirement for well-controlled typical manned aerial vehicles.

The Study of the Peer-to-Peer Communication System for a UAV Navigational Monitoring Using a HSDPA (HSDPA를 이용한 무인항공기 항법 모니터링용 Peer-to-Peer 통신 시스템 구현 연구)

  • Kim, Ho-Gyun;Song, Jun-Beom;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1025-1033
    • /
    • 2011
  • This paper presents a realization of a peer-to-peer communication system for a UAV navigational monitoring using a commercial HSDPA(High Speed Download Packet Access) mobile communication device. The realized system consists of a communication server, an air data terminal and multiple ground monitoring devices, where the server transfers navigational data from a UAV to multiple monitoring devices in real-time with commercial HSDPA modem. Through ground and flight tests, data were obtained to observe the realized system. Test results show that, depending on communicational environment, about 300msec delay, congestion and packet-loss between air data terminal and ground monitoring devices. Nevertheless, through high-speed long range test on a ground vehicle and altitude test with a UAV flight, the feasibility of a UAV navigational monitoring system was observed.

Trajectory Tracking Controller Design using L1 Adaptive Control for Multirotor UAVs (L1 적응 제어 기법을 이용한 멀티로터 무인 항공기의 궤적 추종 기법 설계)

  • Jung, Yeundeuk;Cho, Sungwook;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.842-850
    • /
    • 2014
  • This paper presents a trajectory tracking controller for rotorcraft UAVs to improve the tracking performances in the presence of various uncertainties. The proposed tracking method consists of a velocity guidance law based on the relative distance and L1 adaptive augmentation loop for tracking the velocity commands. In the proposed structure, the desired velocity generated by the guidance law is the reference value of the adaptive controller for accurate path tracking. In the guidance law, the desired acceleration is generated based on the relative distance and its derivatives, and then the velocity command of the inner control loop is calculated by integrating the accelerations. $L_1$ augmentation loop supplements the linear controller to guarantee the flight performances such as a tracking accuracy in the presence of the uncertainties. The proposed controller was validated in actual flight tests to successfully demonstrate its capability using a quadrotor UAV.

Comparative Analysis on Muscle Function and EMG of Trunk and Lower Extremity in Short and Long Distance Athlete (육상 단거리 선수와 장거리 선수의 체간과 하지의 근기능 및 근전도 비교 분석)

  • Jung, Jae-Hu;Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • The purpose of this study was to compare and analyze muscle function and EMG of the trunk and the lower extremity in short and long distance athletes and in order to determine difference in peak torque per unit weight, muscle power per unit weight, endurance ratio, and %MVIC classified by muscle. For that purpose, isokinetic muscle function tests for waist, knee, and ankle joints and EMG measurements for the trunk and the lower extremity muscle with running motion were conducted for 7 short and long distance high school athletes respectively. The study over muscle function of waist, knee, and ankle joints indicates that peak torque per unit weight of short distance athletes is higher than that of long distance athletes in extension and flexion of waist joint, plantar flexion of right ankle joint, and dorsi flexion of left ankle joint. In case of the muscle power per unit weight of short distance athletes is also higher than long distance athletes in waist, knee, and ankle joints. No difference in endurance ratio of waist, knee, and ankle joints between the two groups was founded. The results of the test over EMG of the trunk and the lower extremity show that %MVIC of erector spinae, rectus femoris, vastus medialis, vastus lateralis, and tibialis anterior is higher than that of long distance athletes in support phase. The above results proved to be the same in flight phase except for %MVIC of medial gastrocnemius. In other words, %MVIC of medial gastrocnemius for short distance athletes turned out to be higher than that of long distance athletes in flight phase.

Prediction of Pitch and Roll Dynamic Derivatives for Flight Vehicle using CFD (전산유체역학을 이용한 비행체의 피치와 롤 동안정 미계수 예측)

  • Lee, Hyung-Ro;Gong, Hyo-Joon;Kim, Beom-Soo;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.395-404
    • /
    • 2012
  • This paper presents computations of the dynamic derivatives of three dimensional flight vehicle configurations using CFD. The pitch dynamic derivatives are computed from the pitch sinusoidal motion, while the roll damping is computed based on steady state calculation using a non-inertial frame method. The Basic Finner and the SDM(Standard Dynamic Model) are chosen for the benchmark tests against other numerical and experimental results. For the flow calculations, a 3-D Euler solver that can be run both on the non-inertial frame and on the inertial frame is developed. A dual-time stepping method is applied for the unsteady time accurate simulations. A good agreement of pitch-roll dynamic derivatives with previously published numerical results and the experimental results is observed.

Development and Test of Line-Telemetry DPS for KSLV-I Upper Stage (나로호 상단부 Line-Telemetry 데이터처리시스템 개발 및 시험)

  • Kim, Kwang-Soo;Lee, Soo-Jin;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.107-115
    • /
    • 2011
  • The line-telemetry data processing system is necessary for monitoring the status of each onboard systems of KSLV-I upper stage during the ground tests and launch preparation. The mission of line-telemetry system is to provide reference telemetry data and to monitor the status of upper stage. The line-telemetry data processing system consists of a PCM acquisition/processing server, a system management server, and 9 monitoring consoles. In this paper, we will describe the overview of onboard remote measurement system, the design of the line-telemetry data processing system, anomaly setup information for indicating alarm signal in case of abnormal occurrence, and the result of the ground test and flight test.