• Title/Summary/Keyword: flight dynamics

Search Result 304, Processing Time 0.027 seconds

Guidance and Control Algorithm for Waypoint Following of Tilt-Rotor Airplane in Helicopter Flight Mode (틸트로터 항공기의 경로점 추종 비행유도제어 알고리즘 설계 : 헬리콥터 비행모드)

  • Ha, Cheol-Keun;Yun, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.207-213
    • /
    • 2005
  • This paper deals with an autonomous flight guidance and control algorithm design for TR301 tilt-rotor airplane under development by Korea Aerospace Research Institute for simulation purpose. The objective of this study is to design autonomous flight algorithm in which the tilt-rotor airplane should follow the given waypoints precisely. The approach to this objective in this study is that, first of all, model-based inversion is applied to the highly nonlinear tilt-rotor dynamics, where the tilt-rotor airplane is assumed to fly at helicopter flight mode(nacelle angle=0 deg), and then the control algorithm, based on classical control, is designed to satisfy overall system stabilization and precise waypoint following performance. Especially, model uncertainties due to the tiltrotor model itself and inversion process are adaptively compensated in a simple neural network(Sigma-Phi NN) for performance robustness. The designed algorithm is evaluated in the tilt-rotor nonlinear airplane in helicopter flight mode to analyze the following performance for given waypoints. The simulation results show that the waypoint following responses for this algorithm are satisfactory, and control input responses are within control limits without saturation.

Study on Integrated-Flight Simulation Method Using CFT Imagery (탑재비행시험 영상을 적용한 통합비행 시뮬레이션 기법 연구)

  • Jeong, Dong Gil;Yun, Hyo Seok;Park, Jin Hyen
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.111-117
    • /
    • 2018
  • It is indispensable for a missile to track a target under the flight condition since the tracking capability affects the system performance considerably. The best way to verify the tracker's performance is flight test while it costs too much. Consequently, captive flight test or CFT has an important role in the development of a missile system. CFT, however, cannot simulate missile dynamics and is an offline and open-loop test. In this paper, we propose a new integrated-flight simulation(IFS) method using CFT imagery to overcome the limitation of synthetic image-based IFS method. This method increases the utilization of CFT's outputs and compensates the reality of imagery which lacks in the synthetic image-based IFS. Using this method make it possible to verify the system capability in various simulation modes.

One optimization on the flight trajectories of re-entry vehicle

  • Takano, Hiroyuki;Nakamura, Kazuki;Baba, Yoriaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.307-310
    • /
    • 1996
  • In this paper, we deal with some numerical analyses of a re-entry vehicle in a 2-dimensional plane as an optimal control problem. To reduce the dynamic load, the heat load and the oscillation in the trajectory, we researched the trajectories in which the load factor or the rate of flight path angle was minimized during re-entry. In addition to that, taking advantage of the monotonous subarc method and the folded time-axis method, we tried to find the heat-less and load-less trajectory with combinations of some sectional functionals so that we can achieve more comfortability.

  • PDF

A study on the control law of automatic rudder trim system for KTX-1 (KTX-1 자동러더트림 장치 제어 법칙에 관한 연구)

  • 박완기;김병수;이재명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1647-1650
    • /
    • 1997
  • This paper presents the control law of Automatic Rudder Trim System(ARTS) for the KTX-1. The proposed ARTS is designed mainly t reduce the pilot's work load for trimming in the various conditiions of engine torque. airspeed, and aircraft configuration. The ARTS partially compensates the transient yawing motion due to change of engine power in turboprop aircraft because of the limitation of the actuation speed of the trim motor. In this paper flight test data are analyzed to understand the phenomena and the dynamics of the reversible rudder flight control system is derived. Finally, the control concept and conrtol law of ARTS are described and the characteristics of the ARTS are analyzed through simulation study.

  • PDF

Design of 6-DOF Attitude Controller of the UAV Simulator's Hovering Model

  • Keh, Joong-Eup;Lee, Mal-Young;Kim, Byeong-Il;Chang, Yu-Shin;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.969-974
    • /
    • 2004
  • For a maneuvering unmanned autonomous helicopter, it is necessary to design a proper controller of each flight mode. In this paper, overall helicopter dynamics is derived and hovering model is linearized and transformed into a state equation form. However, since it is difficult to obtain parameters of stability derivatives in the state equation directly, a linear control model is derived by time-domain parametric system identification method with real flight data of the model helicopter. Then, two different controllers - a linear feedback controller with proportional gains and a robust controller - are designed and their performance is compared. Both proposed controllers show outstanding results by computer simulation. These validated controllers can be used to autonomous flight controller of a real unmanned model helicopter.

  • PDF

A real time performance evaluation technique of guidance and control systems (유도조종장치의 실시간 성능평가 기법)

  • 김태연;양태수;김영주;이종하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.165-170
    • /
    • 1992
  • In this paper, the Hardware-In-The-Loop Simulation(HILS) of missile systems are studied. The HILS is an effective performance evaluation technique that bridges the simulation fidelity gap between analytic all-digital simulations and actual flight tests of missile systems. The HILS may be required to perform system integration tests, performance evaluation at system or subsystem level. Major elements of this HILS facility will include the flight table, simulation computers, I/O computer and peripheral equipments. HILS of missile systems typically involve computer modeling of flight dynamics coupled with a hardware guidance and control(G/C) systems. This paper describes a real time performance evaluation technique of a G/C system, Development of a HILS for a Autopilot of SAM G/C will be used as an example.

  • PDF

Dynamic Model and P-PD Control based Flight Performance Evaluation for Hexa-Rotor Type UAV (헥사로터형 무인기의 모델링과 P-PD기반 비행성능평가)

  • Jin, Taeseok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1074-1080
    • /
    • 2015
  • In the last decades, the increasing interest in unmanned aerial vehicle(UAV) for military, surveillance, and rescue applications made necessary the development of flight control theory and body structure more and more efficient and fast. In this paper, we describe the design and performance of a prototype hexarotor UAV platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, dynamic modeling and simulation in the hexarotor helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(ARM-cortex) board. The P-PD control algorithm was used to control the hexarotor. We used the Matlab software to help us to tune the P-PD control parameters for quick response and minimizing the fluctuation. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

Analysis of the Static and Dynamic Stability Properties of the Unmaned Airship

  • Lee, Hae Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.82-94
    • /
    • 2001
  • The purpose of this paper is to analyze the static and dynamic stability-of the unmanned airship under development ; the target airship's over-all length of hull is 50m and the maximum diameter is 12.5m. For the analysis, the dynamic model of an airship was defined and both the nonlinear and linear dynamic equations of motion were derived. Two different configuration models (KA002Y and KA003Y) of the airship were used for the target model of the static stability analysis and the dynamic stability analysis. From the result of analyses, though the airship is unstable in static stability, dynamic characteristics of the airship can provide the stable dynamic stability. All of the results, airship models and dynamic flight equations will be an important basement and basic information for the next step of developing the automatic flight control system(AFCS) and the stability augmentation system(SAS) for the unmanned airship as well as for the stratospheric airship in the future.

  • PDF

Attitude Dynamics Identification of Unmanned Aircraft Vehicle

  • Salman Shaaban Ali;Sreenatha Anavatti G.;Choi, Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.782-787
    • /
    • 2006
  • The role of Unmanned Aircraft Vehicles(UAVs) has been increasing significantly in both military and civilian operations. Many complex systems, such as UAVs, are difficult to model accurately because they exhibit nonlinearity and show variations with time. Therefore, the control system must address the issues of uncertainty, nonlinearity, and complexity. Hence, identification of the mathematical model is an important process in controller design. In this paper, attitude dynamics identification of UAV is investigated. Using the flight data, nonlinear state space model for attitude dynamics of UAV is derived and verified. Real time simulation results show that the model dynamics match experimental data.

Analysis of Launching Dynamics Using Finite Element Method (유한요소법을 이용한 발사역학 해석)

  • Lee, Hak-Yeol;Song, Oh-Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2008
  • During the launching phase, a launcher is vibrated by launching forces and as a result, the vibrating launcher affects the behavior of the missile. One of the important performances of the launcher is that the launched missile should be in a stable condition at the launching stage. In this paper, the launcher vibration at the launching phase is investigated in order to secure the stable flight of the missile. Using the finite element method, launching dynamics is investigated to analyze the behaviors of the launcher and missile considering the effect of the launcher vibration. In addition, performance of consecutive launching and launching dynamics of the launcher which launches missiles consecutively are studied for the various conditions after first launch.