• Title/Summary/Keyword: flexural vibration

Search Result 311, Processing Time 0.02 seconds

Coupled Vibration of Stiffened Plates due to Motion of Stiffeners (보강재의 운동으로 인한 보강판의 연성진동)

  • 이현엽
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.153-159
    • /
    • 1997
  • In a stiffened plate reinforced on one of its sides by beam type stiffeners, the asymmetry about the plate mid-plane induces coupling between flexural wave and longitudinal wave. In this research interactions between flexural and longitudinal wave motion are analyzed in a stiffened plate which is reinforced only in one direction. The plate is modelled as a beam to which offset spring-mounted masses are attached at regular intervals. Propagation constants of the coupled waves and corresponding characteristic waves are derived by using periodic structure theory, and a computer code is developed. Also, sample calculations are carried out and the results are discussed.

  • PDF

Hybrid vibration control of smart laminated composite beams using piezoelectric and viscoelastic material (압전재료와 점탄성 재료를 이용한 지능 적층보의 하이브리드 진동 제어)

  • 강영규;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.133-137
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained-layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method, This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

Nonlinear Modelling for the Vibration Analysis of a Rotating Ring with the In-Plane/Out-of-Plane Deformations (면내/면외 변형이 있는 회전 링의 진동해석을 위한 비선형 모델링)

  • Kim, Won-Suk;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.42-47
    • /
    • 2003
  • Nonlinear models for a thin ring rotating at a constant speed are developed. The geometric nonlinearity of displacements is considered by adopting the Lagrange strain theory for the circumferential strain. By using Hamilton’s principle, the coupled nonlinear partial differential equations are derived, which describe the out-of-plane and in-plane bending, extensional and torsional motions. The natural frequencies are calculated from the linearized equations at various rotational speeds. Finally, the computation results from the nonlinear models are compared with those from a linear model. Based on the comparison, this study recommends which model is appropriate to describe the behavior of the rotating ring.

Parametric Studies of Flexural Free Vibrations of Circular Strip Foundations with Various End Constraints Resting on Pasternak Soil (경계조건 변화에 따른 Pasternak 지반으로 지지된 원호형 띠기초의 휨 자유진동에 관한 변수연구)

  • Lee, Byoung-Koo;Li, Guang-Fan;Kang, Hee-Jong;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.835-846
    • /
    • 2007
  • This paper deals with the flexural free vibrations of circular strip foundation with the variable breadth on Pasternak soil. The breadth of strip varies with the linear functional fashion, which is symmetric about the mid-arc. Differential equations governing flexural free vibrations of such strip foundation are derived, in which the elastic soil with the shear layer, i.e. Pasternak soil, is considered. Effects of the rotatory and shear deformation are included in the governing equations. Differential equations are numerically solved to calculate the natural frequencies and mode shapes. In the numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. Four lowest frequency parameters accompanied with their corresponding mode shapes are reported and parametric studies between frequency parameters and various system parameters are investigated.

An Experimental Study on Dynamic Properties of Concrete with Vibration-Mitigation Materials (제진재 혼입 콘크리트의 동적물성에 관한 실험적 연구)

  • Chung, Young-Soo;Park, Yong-Goo
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.261-270
    • /
    • 1999
  • In these days, construction activities have caused civil petitions associated with vibration-induced damages or nuisances. Therefore, it is strongly needed to develop a remedial technique to mitigate unfavorable effects. The objective of this experimental research is to investigate material and structural dynamic characteristics of vibration-controlled concretes which have been proportionally mixed with various vibration reducing material, such as latex, rubber powder, plastic resin, polystyrofoams and etc. Normal and high strength concrete specimens are also prepared for corresponding comparison. As part of the recycling research for obsolete rubber and plastic materials, 32 concrete cylinders and 10 concrete flexural beams have been made for material and structural dynamic properties, respectively. In accordance with the resonance test on concrete cylinders, it can be concluded that concrete with vibration-reducing material have relatively larger material damping ration than normal or high strength concrete. Styrofoam is determined to be very effective vibration-reducing mixtures. From the vibration test on 10 concrete flexural beams, meamwhile, of importance observations was that material damping ratio is very smaller than structural damping ratio of corresponding specimen. But further vibration test on more flexural beams should be strongly needed by varying support conditions.

Experiment on Vibration control of Beam using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 보의 진동제어 실험)

  • Choi, Jin-Young;Kang, Young-Kyu;Kim, Jae-Hwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.262-267
    • /
    • 2000
  • The flexural vibration of aluminum beams with active and passive constrained-layer damping has been investigated experimentally to design structure with maximum possible damping capacity. Piezoelectric film is used as sensor and piezoceramic as actuator for negative velocity feedback control. This paper shows the effectiveness of active constrained-layer damping treatment through experiment, and we have carried out an experiment to study effect of beam thickness.

  • PDF

Vibration and Stability Characteristics of Cylindrical Panels by the Galerkin Method (Galerkin 해석법에 의한 원통 Panel의 진동 및 좌굴특성)

  • Park, Moon Ho;Park, Sung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 1991
  • This paper presents a numerical analysis procedure and a characteristics for vibration and buckling of the cylinderical panels. The panels with simply-simply or simply-clamped edge supports are subjectes to circumferential compressive or flexural stresses. The differential equations governing vibration and buckling for these panels are derived by using the fundamental differential equation of the Love-Timoshenko and are solved numerically via the Galerkin method. The panel with simply-clamped edge supports is used a trigonometric function or a eigen function of a beam as a trial function and the effects of trial functions on numerical solutions are displayed. Numerical results are presented to demonstrate the effects of the flexural parameters in natural frequencies and coefficients of critical buckling and some typical mode shapes of vibration and buckling are also presented.

  • PDF

A Study on Structural Intensity Measurement of Semi-infinite Beam (반무한보의 진동 인텐시티 계측에 대한 연구)

  • 이덕영;박성태
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.43-53
    • /
    • 1997
  • This paper investigated the practical use for measuring the structural intensity (power flow per width of cross section) in a uniform semi-infinite beam in flexural vibration. The structural intensity is obtained as a vector at a measurement point, One-dimensional structural intensity can be obtained from 4-point cross spectral measurement, or 2-point measurement on the assumption of far field. The measurement errors due to finite difference approximation and phase mismatch of accelerometers are examined. For precise measurements, it would be better to make the value of k$\delta$(wave number x space between accelerometers) between 0.5 and 1.0. Formulation of the relation between bending waves in structures and structural intensity makes it possible to separate the wave components by which one can get a state of the vibration field. Experimental results are obtained from 2- and 4-point measurement performed at 200mm (near field) and 400mm (far field) apart from excitation point in random excitation. the results are compared with the theoretical values and measured values of input power spectrum in order to verify the accuracy of structural intensity method, 2-point method is suggested as the practical structural intensity method.

  • PDF