• Title/Summary/Keyword: flexural tests

Search Result 837, Processing Time 0.024 seconds

Behavior of recycled steel fiber-reinforced concrete beams in torsion- experimental and numerical approaches

  • Mohammad Rezaie Oshtolagh;Masood Farzam;Nima Kian;Hamed Sadaghian
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.173-184
    • /
    • 2023
  • In this study, mechanical, flexural post-cracking, and torsional behaviors of recycled steel fiber-reinforced concrete (RSFRC) incorporating steel fibers obtained from recycling of waste tires were investigated. Initially, three concrete mixes with different fiber contents (0, 40, and 80 kg/m3) were designed and tested in fresh and hardened states. Subsequently, the flexural post-cracking behaviors of RSFRCs were assessed by conducting three-point bending tests on notched beams. It was observed that recycled steel fibers improve the post-cracking flexural behavior in terms of energy absorption, ductility, and residual flexural strength. What's more, torsional behaviors of four RSFRC concrete beams with varying reinforcement configurations were investigated. The results indicated that RSFRCs exhibited an improved post-elastic torsional behaviors, both in terms of the torsional capacity and ductility of the beams. Additionally, numerical analyses were performed to capture the behaviors of RSFRCs in flexure and torsion. At first, inverse analyses were carried out on the results of the three-point bending tests to determine the tensile functions of RSFRC specimens. Additionally, the applicability of the obtained RSFRC tensile functions was verified by comparing the results of the conducted experiments to their numerical counterparts. Finally, it is noteworthy that, despite the scatter (i.e., non-uniqueness) in the aspect ratio of recycled steel fiber (as opposed to industrial steel fiber), their inclusion contributed to the improvement of post-cracking flexural and torsional capacities.

Flexural Strength Evaluation of PSC Beam with Loss of PS Tendon Area (PS강재의 단면적 감소에 따른 PSC보의 휨강도 평가)

  • Park, Soon-Hyung;Kim, Yong-Tae;Youn, Seok-Goo;Kim, Eun-Kyum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.309-312
    • /
    • 2008
  • This paper describes ultimate load tests which were performed to show the effects of prestress loss and tendon corrosion on the flexural strength of post-tensioned concrete beams and the occurrence of wire fracture. Five test specimens were fabricated in laboratory with the variations of the prestress of tendons and the loss of tendon area. For two specimens, small area of tendon at the center of the beam was exposed by using diameter 25mm drill and the exposed tendon was corroded using accelerated corrosion equipment. During the tests, deflections, crack width, and strain changes were measured and acoustic events were monitored with two acoustic sensors. Tests results show that the ultimate flexural strength of test specimens with corroded tendons is smaller than the predicted flexural strength which is calculated considering the loss of tendon area. It is considered that estimation of flexural strength of PSC beams with corroded tendons is very complicated just based on the loss of tendon area obtained by one-side visual inspection.

  • PDF

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.

Effects of Specialty Cellulose Fibers on Improvement of Flexural Performance and Control of Cracking of Concrete (콘크리트의 휨성능 증진 및 균열제어에 대한 특수 가공된 셀룰로오스섬유의 효과)

  • 원종필;박찬기
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.89-98
    • /
    • 2000
  • The mechanical properties of specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to drying shrinkage crack reduction potential of concrete and theirs evaluation are presented in this paper. The effects of differing fiber volume fraction(0.03%, 0.06%, 0.08%, 0.1%, 0.15%, 0.2%) were studied. The results of tests of the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Flexural performance(flexural strength and flexural toughness) test results indicated that specialty cellulose fiber reinforcement showed an ability to increase the flexural performance of normal- and high- strength concrete(as compared to plain and polypropylene fiber reinforced concrete). Optimum specialty cellulose fiber reinforced concrete were obtianed using 0.08% fiber volume fraction. Drying shrinkage cracking test results confirmed specialty cellulose fibers are effective in reducing the drying shrinkage cracking of normal and high-strength concrete(as compared to popylene fiber reinforced concrete).

Stress and Strain Analyses of Thick Composites with Fiber Waviness under Flexural Loading (굽힘 하중 하에서 굴곡진 보강섬유를 가진 두꺼운 복합재료 보의 응력 분포 해석)

  • 이승우;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.95-100
    • /
    • 1999
  • A FEA(finite element analysis model) was proposed to study stress and strain distributions in thick composites with fiber waviness and initial curvature under flexural loading. Three types of model with initial curvature were considered in this study: flat, concave and concave models. In the analysis, both material and geometrical nonlinearities were incorporated. Four point flexural tests were conducted on the flat specimens to obtain the flexural behavior of thick composites experimentally. It was concluded that the predictions from the models were in good agreement with the experimental results. It was shown that the stress and strain distributions as well as nonlinear flexural behaviors of thick composites were significantly affected by the fiber waviness and initial curvature.

  • PDF

Flexural Behavior of I-beam Composite Hollow Slabs (I형강 합성 중공바닥판의 휨거동)

  • 김대호;심창수;박창규;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.421-426
    • /
    • 2003
  • For the replacement of deteriorated concrete decks or wider-span slab, composite slab could be very attactive due to higher stiffness and strength. Based on the previous research, a modified I-beam composite hollow slab was suggested. In order to investigate the static flexural behavior of the proposed composite slab and to suggest its flexural design method, experiments were performed. Judging from the tests, a composite slab with I-beam having a semi-circle hole showed better structural performance. The effect of web details on the flexural stiffness was negligible. Flexural stiffness, ultimate strength, and ductility of the composite slabs were significantly greater than the RC slab due to composite action. While the failure of the RC slab was punching shear failure, the composite hollow slab showed flexural cracking and failure by yielding of the I-beams and crushing of concrete. Therefore, the current one-way design concept is appropriate for the design of I-beam composite hollow slab.

  • PDF

Flexural Creep Model of Recycled-PET Polymer Concrete (재활용 PET 폴리머 콘크리트의 휨 크리프모델)

  • Tae, Ghi-Ho;Jo, Byung-Wan;Park, Jong-Wha
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.661-664
    • /
    • 2006
  • As polymer concrete become more widely used by design engineers, it is important that the viscoelastic mechanical behavior of these materials is properly taken into account. Also, an important consideration in the design of polymer concrete is the behavior of creep according to ages of polymer concrete. In this study, flexural creep test was performed on recycled-PET polymer concrete. An method of accelerating the flexural creep tests, called the two-point method, was developed. The two-point method uses the results of three 24-hours creep tests performed at elevated temperatures to develop a Prony series equation that predicts the long-term creep strains at room temperature. The test results demonstrated that two-point method can predict long-term creep strain with sufficient accuracy. The difference between the predicted creep compliance values from those obtained experimentally was less than 5 percent.

  • PDF

Assessment on the Flexural Performance of Hybrid Fiber Reinforced ECC (하이브리드 섬유보강 ECC의 휨성능 평가)

  • Min, Kyung-Hwan;Kim, Young-Woo;Cho, Seong-Hun;Yang, Jun-Mo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.5-6
    • /
    • 2009
  • In this study, with 2% of total PVA fiber volume fraction identically, flexural performances of ECC had long and short fibers were assessed. In the material tests, flexural properties of a mixture with 1.6% REC15 and 0.4% RF4000 were most superior. Quasi-static and dynamic tests with six 160${\times}$290${\times}$2300 mm specimens were carried out, and improvement of shear strength and performance of partial placing of ECC were estimated.

  • PDF

Effect of angle stiffeners on the flexural strength and stiffness of cold-formed steel beams

  • Dar, M. Adil;Subramanian, N.;Rather, Amer I.;Dar, A.R.;Lim, James B.P.;Anbarasu, M.;Roy, Krishanu
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.225-243
    • /
    • 2019
  • Cold-formed steel (CFS) sections when used as primary load carrying members often require additional strengthening for retrofitting purposes. In some cases, it is also necessary to reduce deflections in order to satisfy serviceability requirements. The introduction of angle sections, screwed to the webs so as to act as external stiffeners, has the potential to both increase flexural strength as well as reduce deflections. This paper presents the results of ten four-point bending tests, on built-up CFS sections, both open and closed, with different stiffening arrangements. In the laboratory tests, the stiffening arrangements increased the moment capacity and stiffness of the CFS beams by up to 85% and 100% respectively. The increase in moment capacity was more evident for the open sections, while that reduction in deflection was largest for the closed sections.

A study on the flexural toughness evaluation method of steel fiber reinforced shotcrete (강섬유 보강 숏크리트의 휨인성 평가 방법 연구)

  • 김재동;김덕영
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.196-210
    • /
    • 2000
  • This study was aimed to verify the validity of the flexural toughness evaluation method of steel fiber reinforced shotcrete(SFRS) currently being adopted by Korea Highway Corporation(KHC). Total 33 beam specimens using six different kinds of steel fiber products were prepared at tunnel construction sites and flexural toughness tests were executed at laboratory. Equivalent flexural strengths and toughness quotients were evaluated from the tests following the KHC guide iud these were compared with the quality grades determined under the guides proposed by ASTM, ITA and EFNARC. To discard the disadvantage that the toughness quotient could be influenced by flexural strength when following the KHC guide, a modification substituting the designed flexural strength for the flexural strength in the toughness quotient calculation formula was proposed to rate the quality of SFRS more adequately.

  • PDF