• Title/Summary/Keyword: flexural strength analysis

Search Result 792, Processing Time 0.031 seconds

Experimental Study on Deflection Evaluation of KCI specification and Eurocode 2 (콘크리트 구조 설계기준과 Eurocode 2의 처짐 산정에 관한 실험적 고찰)

  • Lee, In-Ju;Kim, Tae-Wan;Oh, Seok-Mim;Kim, Jun-Won;Park, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.141-144
    • /
    • 2008
  • Deflection in terms of serviceability of reinforced concrete structures is considered as one of significant factor. Domestic concrete specification offers a procedure to evaluate deflection using effective moment of inertia at cracked section, which has been known as Branson's equation in ACI. Branson's equation was derived from statistical analysis of maximum deflection of flexural members, but is somewhat weak in no reflection of bond characteristics between reinforced bars and concrete, such as tension stiffening effect. Therefore, present code creates difference from actual deflection. In this study, experiments about deflection of RC beams was completed to compare domestic standard and Eurocode 2, which calculates deflection considering tension stiffening effect. Four RC beams were built and tested, and initial modulus of elasticity and tensile strength of concrete used in the test was calculated by each design standard.

  • PDF

Effect of Transition Metal on Properties of SiC Electroconductive Ceramic Composites (SIC 도전성 세라믹 복합체의 특성에 미치는 천이금속의 영향)

  • 신용덕;오상수;주진영
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.352-357
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% TiB$_2$ and using 61vo1.% SiC - 39vo1.% WC powders with the liquid forming additives of 12wt% $Al_2$O$_3$+Y$_2$O$_3$ by pressureless annealing at 180$0^{\circ}C$ for 4 hours. Reactions between SiC and transition metal TiB$_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), TiB$_2$ and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-TiB$_2$, and SiC(2H), WC and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-WC composites. $\beta$\$\longrightarrow$$\alpha$-SiC phase transformation was ocurred on the SiC-TiB$_2$, but $\alpha$\$\longrightarrow$$\beta$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the vicker's hardness, the flexural strength and the fracture toughness showed respectively value of 96.2%, 13.34GPa, 310.19Mpa and 5.53Mpaㆍml/2 in SiC-WC composites. The electrical resistivity of the SiC-TiB$_2$ and the SiC-WC composites is all positive temperature coefficient resistance(PTCR) in the temperature ranges from $25^{\circ}C$ to 50$0^{\circ}C$. 2.64${\times}$10-2/$^{\circ}C$ of PTCR of SiC-WC was higher than 1.645${\times}$10-3/$^{\circ}C$ of SiC-TiB$_2$ composites.posites.

Effect of the YAG with fracture toughness and electric conductive of $\beta$-Sic-$TiB_2$ ($\beta$-Sic-$TiB_2$복합체의 파괴인성과 전기전도도젠 미치는 YAG의 영향)

  • Yoon, Se-Won;Ju, Jin-Young;Shin, Yong-Deok;Yeo, Dong-Hun;Park, Ki-Yub
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1545-1547
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-Sic-$TiB_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), $TiB_2$, and YAG($Al_{5}Y_{3}O_{12}$). The relative density and the mechanical properties of composites were increased with increasing $Al_{2}O_{3}+Y_{2}O_3$ contents because YAG of reaction between $Al_{2}O_3$ and $Y_{2}O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism. the fracture toughness showed 7.1MPa${\cdot}m^{1/2}$. For composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature The electrical resistivity and the resistance temperature coefficient respectively showed the lowest of 6.0${\sim}10^{-4}{\Omega}{\cdot}$ cm and 3.1${\times}10^{-3}/^{\circ}C$ for composite added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of 25$^{\circ}C$ to 700$^{\circ}C$.

  • PDF

Effect of YAG on $\beta$-Sic-$ZrB_2$ Composites ($\beta$-Sic-$ZrB_2$계 복합체에 미치는 YAG의 영향)

  • Hwang, Chul;Ju, Jin-Young;Shin, Yong-Deok;Lee, Jong-Doc;Jin, Hong-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1474-1476
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-Sic-$ZrB_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_{3}$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), $ZrB_2$, and YAG($Al_{5}Y_{3}O_{12}$). The relative density of composites were increased with increasing $Al_{2}O_{3}+Y_{2}O_{3}$ contents. The flexural strength showed the highest value of 390.6MPa for composites added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. Owing to crack deflection, crack bridging. phase transition and YAG of fracture toughness mechanism. the fracture toughness showed the highest value of 6.3MPa${\cdot}m^{1/2}$ for composites added with 24wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance (PTCR) in the temperature range of 25$^{\circ}C$ to 900$^{\circ}C$.

  • PDF

Analysis of Weight Reduction Effect of Void Slab on Long and Short Term Deflections of Flat Plates (플랫 플레이트의 장단기 처짐에 대한 중공 슬래브의 자중저감 효과 분석)

  • Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.343-350
    • /
    • 2017
  • The RC flat plate system has benefits such as a short construction time, an improvement of workability and a floor height reduction. In the case of long span slab, cracking damages and large deflections tend to occur due to the low flexural stiffness of flat plates. Specially, over-loading by self-weight of slab during construction increases short and long-term deflections. These problems may be solved by the use of void slab that has benefits of the reduced self-weight. In this study, to analyze an effect of self-weight reduction of void slab on slab deflections, the parametric study is performed. Including variable conditions such as a concrete strength, a slab construction cycle, the number of shored floors, a compressive reinforcement ratio and a tensile reinforcement ratio, slab construction loads and deflections are calculated by considering the construction stages, concrete cracking, and long-term effects. The short-term deflections during construction and the long-term deflections after construction of both of normal and void slabs are compared and the effects of void slab on the reduction of slab deflections are analyzed.

A Study on the Improvement of Measuring Method for Density of Model Ice (모형빙 밀도 계측 방법 개선 연구)

  • Ha, Jung-Seok;Kang, Kuk-Jin;Cho, Seong-Rak;Jeong, Seong-Yeob;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.104-109
    • /
    • 2015
  • The Korea Research Institute of Ships & Ocean Engineering (KRISO) has an ice tank to make a test environment similar to the real ice in the polar sea in order to carry out model tests. One of the most important task of the ice tank is to generate the model ice to have similar material properties as sea ice. The primary properties of sea ice which influence the ice performance of ice breakers and ice-strengthened vessels traveling in the polar sea are ice thickness, flexural strength, density, modulus of elasticity and crystal structure etc. Among them, since the density of model ice influences the buoyance resistance of ice for the ship model, the accurate measurement of ice density should be used to obtain the accurate analysis results from the model test. In this paper, some existing methods to measure the density of model ice are reviewed and a new one is proposed to measure it accurately and easily as possible. In this study, the measuring system including an UTM and several measuring devices was established to obtain the model ice density. Polyethylene and ice specimens are used for a series of repeatable measurement tests. From the results, it was recognized that both of the displacement method and the weight/weight methods gave the stable and favorable tendency.

Effects of Pressure on Properties of SiC-ZrB2 Composites through SPS (SiC-ZrB2복합체의 특성에 미치는 SPS의 압력영향)

  • Lee, Jung-Hoon;Jin, Bm-Soo;Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2083-2087
    • /
    • 2011
  • The SiC-$ZrB_2$ composites were produced by subjecting a 40:60 vol.% mixture of zirconium diboride($ZrB_2$) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering(SPS). Sintering was carried out for 60sec at $1400^{\circ}C$ (designation as TP145 and TP146), $1500^{\circ}C$(designation as TP155 and TP156) and uniaxial pressure 50MPa, 60MP under argon atmosphere. The physical, electrical, and mechanical properties of the SiC-$ZrB_2$ composites were examined. The relative density of TP145, TP146, TP155 and TP156 were 94.75%, 94.13%, 97.88% and 95.80%, respectively. Reactions between ${\beeta}$-SiC and $ZrB_2$ were not observed via x-ray diffraction (hereafter, XRD) analysis. The flexural strength, 306.23MPa of TP156 was higher than that, 279.42MPa of TP146 at room temperature, but lower than that, 392.30MPa of TP155. The properties of a SiC-$ZrB_2$ composites through SPS under argon atmosphere were positive temperature coefficient resistance (hereafter, PTCR) in the range from $25^{\circ}C$ to $500^{\circ}C$. The electrical resistivities of TP145, TP146, TP155 and TP156 were $6.75{\times}10^{-4}$, $7.22{\times}10^{-4}$, $6.17{\times}10^{-4}$ and $6.71{\times}10^{-4}{\Omega}{\cdot}cm$ at $25^{\circ}C$, respectively. The densification of a SiC-$ZrB_2$ composite through hot pressing depend on the sintering temperature and pressure. However, it is convinced that the densification of a SiC-$ZrB_2$ composite do not depend on sintering pressure under SPS.

The Properties of $\beta-SiC-ZrB_2$ Electroconductive Ceramic Composites with $Al_2O_3+Y_2O_3$Contents ($Al_2O_3+Y_2O_3 첨가량에 따른 {\beta}-SiC-ZrB_2$계 전도성 복합체의 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Hwang, Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.516-522
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-SiC-ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of$Al_2O_3+Y_2O_3$ Phase analysis of composites by XRD revealed $\alpha-SiC(6H) ZrB_2\; and YAG(Al_5Y_3O_{12})$ The relative density of composites were increased with increased Al2O3+Y2O3 contents. The Flexural strength showed the highest value of 390.6MPa for composites added with 20wt% Al2O3+Y2O3 additives at room temperature. Owing to crack deflection crack bridging phase transition and YAG of fracture toughness mechanism the fracture toughness showed the highest value of 6.3MPa.m1/2 for composites added with 24wt% Al2O3+Y2O3 additives at room temperature. The resistance temperature coefficient showed the value of$ 2.46\times10^{-3}\;, 2.47\times10^{-3},\; 2.52\times10^{-3}/^{\circ}C$ for composite added with 16, 20, 24wt% Al2O3+Y2O3 additives respectively. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $256{\circ}C\; to\; 900^{\circ}C$.

  • PDF

Properties of ${\beta}$-SIC TiB$_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering(Ⅱ) (液狀 燒結에 의한 ${\beta}$-SIC TiB$_2$系 導電性 複合體의 特性(Ⅱ))

  • Shin, Yong-Deok;Yim Seung-Hyuk;Song Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.263-270
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and annealed ${\beta}-SiC-TiB_2$,/TEX> electroconductive ceramic composites were investigated as function as functions of the liquid forming additives of $Al_2O_3+Y_2O_3$. The result of phase analysis of composites by XRD revealed ${\alpha}$-SiC(6H), $TiB_2$,/TEX>, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_3$ contents in pressureless annealing method because YAG of reaction between $Al_2O_3$ was increased. The flexural strength showed the highest value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives in pressed annealing method at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed 7.1 MPa ${\cdot}\;m^{1/2}$ for composites added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest value of $6.0{\times}10^{-4}\;{\Omega}\;{\cdot}\;cm(25\'^{\circ}C}$ and $3.0{\times}10^{-3}/^{\circ}C$ for composite added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature, respectively. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature ranges from 25 $^{\circ}C$ to 700 $^{\circ}C$.

  • PDF

The Properties of $\beta-SiC-TiB_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering (액장 소결한 $\beta-SiC-TiB_2$계 전도성 복합체의 특성)

  • Yim, Seung-Hyuk;Shin, Yong-Deok;Song, Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.510-515
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of Al_2O_3+Y_2O_34. The result of phase analysis of composites by XRD revealed $\alpha-SIC(6H)\;TiB_2,\; and YAG(Al5Y3O12) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_34 contents because YAG of reaction between $Al_2O_3\; and\; Y_2O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with 12wt% $Al_2O_3+Y_2O_34 additives at room temperature. Owing to crack deflection crack bridging phase transition and TAG of fracture toughness mechanism the fracture toughness showed 7.1MPa.m1/2 for composites added with 12wt% $Al_2O_3+Y_2O_34 additives at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest of $6.0\times10-4\Omega.cm\; and\; 3.1\times10-3/^{\circ}C4 respectively for composite added with 12wt% \Omega additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}C$.

  • PDF