• Title/Summary/Keyword: flexural strength analysis

Search Result 792, Processing Time 0.028 seconds

Analysis of mechanical properties of secondary concrete products using CO2 captured material (이산화탄소 고정 탄산화물을 적용한 콘크리트 2차 제품의 기초 특성 분석)

  • Hye-Jin Yu;Sung-Kwan Seo;Kuem-Dan Park;Hyuk-Joon Kwon;Jeong-Hwan Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.66-72
    • /
    • 2024
  • In this study, the applicability of CCMs (Carbondioxide conversion capture materials) manufactured by reacting carbon dioxide gas with DG (Desulfurization gypsum) as a cement substitute for secondary concrete products were evaluated and the basic physical properties of CCMs-mixed mortar and concrete specimens were measured to derive the optimal mixing ratio. The main chemical oxides of CCMs were CaO and SO3, and the main crystalline phases were CaSO4·2H2O, Ca(OH)2, CaCO3, and CaSO4. In addition, by the results of particle size analysis and heavy metal measurement, the applicability of CCMs as a cement substitute for secondary concrete products was confirmed. As a result of measuring the strength behavior using mortar and concrete specimens with CCMs, the compressive and flexural strength decreased as the mix ratio of CCMs increased, but requirements by the standards for interlocking blocks and retaining wall blocks, which are target products in this study, were satisfied up to the optimal mixing ratio of 10 wt.% substitution. Therefore, its applicability as a cement substitute for secondary concrete products was confirmed.

Properties of the $\beta$-SiC+39vol.%$ZrB_2$ Composites with $Al_2O_3+Y_2O_3$ additives ($Al_2O_3+Y_2O_3$를 첨가한 $\beta$-SiC+39vol.%$ZrB_2$ 복합체의 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Jin, Hong-Bum;Park, Gi-Yub;Yea, Dong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1913-1915
    • /
    • 1999
  • The ${\beta}-SiC+ZrB_2$ ceramic composites were hot-press sintered and annealed by adding 1, 2, 3wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a liquid forming additives at $1950^{\circ}C$ for 4h. In this microstructures, no reactions were observed between $\beta$-SiC and $ZrB_2$, and the relative density is over 90.79% of the theoretical density and the porosity decreased with increasing $Al_2O_3+Y_2O_3$ contents. Phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H, 4H), $ZrB_2$, $Al_2O_3$ and $\beta$-SiC(15R). Flexural strength showed the highest of 315.46MPa for composites added with 3wt% $Al_2O_3+Y_2O_3$ additives at room temperature. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed the highest of $5.5328MPa{\cdot}m^{1/2}$ for composites added with 2wt% $Al_2O_3+Y_2O_3$ additives at room temperature.

  • PDF

Properties of SiC Electrocondutive Ceramic Composites according to Transition Metal (천이금속 영향에 따른 SiC계 도전성 세라믹 복합체의 특성)

  • Shin, Yong-Deok;Oh, Sang-Soo;Jeon, Jae-Duck;Park, Young;Yim, Seung-Hyuk;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1588-1590
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% $TiB_2$ and using 61vol.% SiC 39vol.% WC powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by pressureless annealing at 1800$^{\circ}C$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), $TiB_2$ and YAG($Al_5Y_3O_{12}$) crystal phase on the SiC-$TiB_2$, and SiC(2H), WC and YAG($Al_5Y_3O_{12}$) crystal phase on the SiC-WC composites. ${\beta}{\rightarrow}{\alpha}$-SiC phase transformation was ocurred on the SiC-$TiB_2$, but ${\alpha}{\rightarrow}{\beta}$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the flexural strength showed respectively value of 96.2%, 310.19Mpa in SiC-WC composites. The electrical resistivity of the SiC-$TiB_2$ and the SiC-WC composites is all positive temperature cofficient resistance(PTCR) in the temperature ranges from 25$^{\circ}C$ to 500$^{\circ}C$.

  • PDF

A Study on the Gauge Types Comparative Analysis of Basic Jacquard Structure (기본 자카드 조직의 게이지 변화에 따른 특성에 관한 연구)

  • Ki, Hee-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.19 no.4
    • /
    • pp.1-15
    • /
    • 2017
  • The aim of this study is to plan a design that satisfies consumer needs by forecasting future properties following changes of gauge in basic Jacquard structure and to provide helpful data for a variety of knit-wear development. Four basic Jacquard knit samples (Normal Jacquard, Bird's eye Jacquard, Floating Jacquard, Tubular Jacquard) were selected and projected by using three types of gauges (7G, 12G, 14G) with an SES-122S type Computer Knitting machine of Shimaseiki MFG. Twelve different types of samples with Jacquards and gauges were tested on a flat table by measuring the course and wale in a 1cm area to calculate the gauge of samples. The mechanical properties of 12 types of Jacquard samples were measured using KES-FB (Kawabata Evaluation System for Fabric, Kata Tech Co. Ltd). As the result of comparing the number of patterns, courses and wales depending on the change of gauge of the basic Jacquard structure, it was observed that the number of patterns per specific length, course and wale has increased from 7G to 14G, a high-gauge. According to objective research regarding Jacquard structure, 7G Tubular Jacquard, which is low gauge, seems to be suitable for masculine design as it is heavy and thick, and has rigid and rough texture due to a high level of flexural strength and shear property. 14G Floating Jacquard, which is high gauge, seems to be suitable for feminine, silhouette design as it is light, thin, soft, flexible and has high drape. The result of this study provides a theoretical foundation for knit-wear development considering basic Jacquard structure and gauge-specific properties. This study can be used to provided directions for the development of knit industry.

  • PDF

Transverse Low Velocity Impact Failure Behavior of Triaxial Braided Composite Tube with Different Braiding Angles (Triaxial braiding 기술을 이용한 원형 튜브의 횡방향 저속충격파괴 거동분석)

  • Sim, Ji-hyun;Park, Sung-min;Kim, Ji-hye;Shin, Dong-woo;Chon, Jin-sung;Kim, Jae-kwan;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.28 no.4
    • /
    • pp.246-252
    • /
    • 2016
  • In comparison to metal alloys, braided composite features a high impact resistance and crash energy absorption potential, and also it still remained competitive stiffness and strength properties. Braiding angle is one of the most important parameters which affect the mechanical behaviors of braided composite. This paper presents transverse low velocity impact failure behavior analysis on the carbon 3D triaxial braided composite tube with the braiding angle of $20^{\circ}$, $50^{\circ}$ and $80^{\circ}$. The flexural behaviour of 3D triaxial braided composite tube under bending loads was studied by conducting quasistatic three point bending test. Also, the low velocity impact responses of the braided composite tubes were also tested to obtain load-displacement curves and energy absorption. Consequently, the increase of the braided angle, the peak load also increases owing to the bigger bending stiffness.

Ultimate Behavior of GFRP Shell Structure Stiffened by Steel Pipe Ring (강관링으로 보강된 GFRP 쉘구조의 극한 거동)

  • Kim, In Gyu;Lim, Seung Hyun;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.219-229
    • /
    • 2014
  • The experiment and FE analysis of ultimate behavior of GFRP cylindrical shell structure stiffened by steel pipe ring instead of rectangular cross-section ring was presented. Four kinds of test models were designed and flexural failure experiment was performed to investigate ultimate behavior characteristic according to the size of cross section of steel pipe ring and diameter of GFRP shell. Material properties of specimens were experimented by bending, tensile and compressive test. Displacements and strains were measured to evaluate failure behavior of steel pipe ring and GFRP shell structure. The experimental results were compared with the FEA results by commercial program ABAQUS. It is observed that GFRP shell structure stiffened by steel ring have enough ductility to bending failure, and an increase of bending rigidity of steel ring is very effective to increase of failure strength of GFRP shell structure.

Analysis of Flexural Strength of Seedling Pots Made by a Pulp-Molding Machine under Different Water Contents (펄프 몰드식 육묘포트의 성형조건 및 수분 흡습에 따른 굴곡 하중 특성 분석)

  • Song, D.B.;Jeong, J.W.;Kim, C.H.;Huh, M.R.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.43-51
    • /
    • 2009
  • Paper mill sludges are discharged around 870,000 M/T annually. Only 30% of the paper mill sludge have been recycled and the rest has been disposed by land fill, incineration, ocean abandonment and other ways. Because of overall prohibition of sludge disposal by London Dumping Convention in 2012, a urgent counter measure for paper mill sludge must be provided. In this paper, some basic experiments were carried out to develop a tray cell pot using paper mill sludge for increasing the recycling potential of the wasted sludge. To establish the manufacturing parameters, the tray cell pots were made with three types of materials including virgin pulp, old news paper and corrugated board mixed in a blend tank of a molding machine. The bending force and moisture content of the produced tray cell pots was measured to confirm the application capability. The tray cell pot could be manufactured under the condition of over 20% of virgin pulp, 40% of old news paper added. However, the corrugated board could not be used because of the glutinous substance included. The produced tray cell pot absorbed water very easily and the bending force decreased rapidly. The waterproof material must be used to applicate the produced tray cell pot in plant growing fields.

Effects of $TiB_{2},ZrB_{2}$ and Sintering Temperature on SiC Composites Manufactured by Pressureless Sintering (상압소결법에 의해 제조한 SiC 복합체의 특성에 미치는 $TiB_{2},ZrB_{2}$와 소결온도의 영향)

  • 주진영;박미림;신용덕;임승혁
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.381-384
    • /
    • 2001
  • The $\beta$-SiC+ZrB$_2$ and $\beta$-SiC+TiB$_2$ceramic electroconductive composites were pressureless-sintered and annealed by adding l2wt% A1$_2$ $O_3$+Y$_2$ $O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density showed highest value of 84.92% of the theoretical density for SiC-TiB$_2$ at 190$0^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), TiB$_2$, $Al_{5}$Y$_2$ $O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 230 MPa for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 6.50 MPa . m$^{1}$2/ for SiC-ZrB$_2$ composites at 190$0^{\circ}C$. The electrical resistivity was measured by the Rauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).).

  • PDF

Properties of a SiC-$ZrB_2$ Composite by condition of SPS on/off Pulse Time (SPS on/off Pulse Time 조건에 따른 SiC-$ZrB_2$ 복합체 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Lee, Hee-Seung;Park, Jin-Hyoung;Kim, In-Yong;Kim, Cheol-Ho;Lee, Jung-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.314-314
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 40vol.% of Zirconium Diboride(hereafter, $ZrB_2$) powders with Silicon Carbide(hereafter, SiC) matrix. TheSiC+40vol.%$ZrB_2$ composites were manufactured through Spark Plasma Sintering(hereafter, SPS) under argon atmosphere, uniaxial pressure of 50MPa, heating rate of $100^{\circ}C$/min, sintering temperature of $1,500^{\circ}C$ and holding time of 5min. But one on/off pulse sequence(one pulse time: 2.78ms) is 10:9(hereafter, SZ10), and the other is 48:8(hereafter, SZ48). The physical and mechanical properties of the SZ12 and SZ48 were examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via X-Ray Diffraction(hereafter, XRD) analysis. The apparent porosity of the SZ10 and SZ48 composites were 9.7455 and 12.2766%, respectively. The SZ10 composite, 593.87MPa, had higher flexural strength than the SZ48 composite, 324.78MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had Positive Temperature Coefficient Resistance(hereafter, PTCR).

  • PDF

Effect of horizontal joints on structural behavior of sustainable self-compacting reinforced concrete beams

  • Ibrahim, Omar Mohamed Omar;Heniegal, Ashraf Mohamed;Ibrahim, Khamis Gamal;Agwa, Ibrahim Saad
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.455-462
    • /
    • 2020
  • This study investigated the effect of horizontal casting joints on the mechanical properties and structural behavior of sustainable self-compacting reinforced concrete beams (SCRCB). The experimental research consisted of two stages. The first stage used four types of concrete mixtures which were produced to indicate the effects of cement replaced with cement waste at 0%, 5%, 10%, and 15% by weight of cement content on fresh concrete properties of self-compacting concrete (SCC) such as, passing ability, filling ability, and segregation resistance. In addition, mechanical properties such as compressive, tensile, and flexural strength were also studied. The second stage selected the best mixture from the first stage and studied the effect of horizontal casting joints on the structural behavior of sustainable SCRCBs. The effect of horizontal casting joints on the mechanical properties and structural behavior were at the 25%, 50%, 75%, and 100% of sample height. Load deflection, failure mode, and theoretical analysis were studied. Results indicated that the incorporation of replacement with cement waste by 5% to 10% led to economic and environmental advantages, and the results were acceptable for fresh and mechanical properties. The results indicated that delaying the time for casting the second layer and increasing the cement waste in concrete mixtures had a great effect on the mechanical properties of SCC. The ultimate load capacity of horizontal casting joints reinforced concrete beams slightly decreased compared with the control beam. The maximum deflection of casting joint beams with 75% of samples height is similar with the control beam. The experimental results of reinforced concrete beams were substantially acceptable with the theoretical results. The failure modes obtained the best forced casting joint on the structural behavior at 50% height of casting in the beam.