• Title/Summary/Keyword: flexural strength analysis

Search Result 792, Processing Time 0.029 seconds

Effect of exposure energy dose on lateral resolution and flexural strength of three-dimensionally printed dental zirconia

  • Kyle Radomski;Yun-Hee Lee;Sang J Lee;Hyung-In Yoon
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.5
    • /
    • pp.248-258
    • /
    • 2023
  • PURPOSE. This study aims to evaluate the effects of exposure energy on the lateral resolution and mechanical strength of dental zirconia manufactured using digital light processing (DLP). MATERIALS AND METHODS. A zirconia suspension and a custom top-down DLP printer were used for in-office manufacturing. The viscosity of the suspension and uniformity of the exposed light intensity were controlled. Based on the exposure energy dose delivered to each layer, the specimens were classified into three groups: low-energy (LE), medium-energy (ME), and high-energy (HE). For each energy group, a simplified molar cube was used to measure the widths of the outline (Xo and Yo) and isthmus (Xi and Yi), and a bar-shaped specimen of the sintered body was tested. A Kruskal-Wallis test for the lateral resolution and one-way analysis of variance for the mechanical strength were performed (α = .05). RESULTS. The zirconia green bodies of the ME group showed better lateral resolution than those of the LE and HE groups (both P < .001). Regarding the flexural strength of the sintered bodies, the ME group had the highest mean value, whereas the LE group had the lowest mean value (both P < .05). The ME group exhibited fewer agglomerates than the LE group, with no distinctive interlayer pores or surface defects. CONCLUSION. Based on these findings, the lateral resolution of the green body and flexural strength of the sintered body of dental zirconia could be affected by the exposure energy dose during DLP. The exposure energy should be optimized when fabricating DLP-based dental zirconia.

Analysis of RC Beams Strengthened with Fiber Sheets (섬유시트로 보강된 RC 보의 해석기법 연구)

  • Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.154-163
    • /
    • 2006
  • This paper presents a nonlinear analysis method for the reinforced concrete beams strengthened by the external bonding of high strength, lightweight fiber sheets on the tension face of the beams. The method is based on the results of experimental studies. The experimental study involved tensile tests of 120 specimens to evaluate the tensile properties of fiber sheets(carbon, glass, and aramid fiber) and bending tests of 75 beams strengthened with various types of fiber sheets to evaluate the flexural capacities. Based on these experimental results, reasonable rupture strains of the fiber sheets were estimated. The nonlinear flexural analysis considered nonlinear flexural stresses as compressive and tensile stresses of concrete, load-deflection curves, and rupture strains of fiber sheets. The nonlinear flexural analysis accurately predicts the load-deflection response and the flexural behavior of the retrofitted beams.

Evaluation of Flexural Capacity of Reinforced Concrete Irregular Walls Based on Existing Experimental Data (기존 실험데이터를 통한 철근콘크리트 이형벽체의 휨내력식 평가)

  • 문경신;하상수;최창식;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.845-850
    • /
    • 2001
  • The primary objective of this study is to develop the new equation that can predict the flexural strength of irregular walls by applying the concept of the effective width which is used in current codes. Results obtained from this data analysis are as follows : 1. It is conservative to use PCI provision and ACI code as the effective width for evaluating the flexural capacity of irregular walls 2. The result of this study shows that the Paulay & Priestley's proposition is available for more exactly and safely predicting flexural capacity of irregular walls throughout a reduction factor.

  • PDF

A Study on the Flexural Behavior of Proposed Spliced PSC-I Type Girder (제안된 Spliced PSC-I형 거더의 휨거동에 관한 연구)

  • 심종성;오홍섭
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.13-23
    • /
    • 2000
  • In this study, an flexural test on half-scale spliced PSC-I girder was conducted to verify the efficiency of the long span spliced girder as suggested by the Korean Highway Design Specification. The experimental results showed that the specimens developed a complex failure mode due to flexural-compression and torsional stress. The cracking moment of each girder was higher the experiment than was calulated by the ACI and the ultimate strength were the almost same. To estimate the safety and the structural efficiency of the spliced girder, the proposed Yielding Resistance Index(YRI) and ductility index by American Concrete Institutes were used based on the energy concept. The proposed YRI defined the ratio of crack resisting energy and the total energy calculated from load-displacement relationship. Based on the analysis of YRI and ductility index, the flexural behavior of the spliced girder was found to be efficient. Through the experimental results, the structural behavior of proposed spliced PSC I-type girder for long span bridge was found to be more efficient than the exsisting PSC I-type girders.

Processing and Flexural Properties of Chopped Jute Fiber Reinforced PLA Sandwich Composites (황마 단섬유 강화 폴리유산 샌드위치 복합재의 제작 및 굽힘 특성)

  • Lee, Gyu Hee;Roh, Jeong U;Lee, Woo Il
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.96-102
    • /
    • 2014
  • In this study, we fabricated jute fiber reinforced polylactic acid (PLA) composite in the form of sandwich panel structure which includes core foam of chopped jute fiber reinforced PLA and outer skin layer of continuous glass fiber reinforced PLA. Flexural properties of the composite were assessed for different jute fiber weight fractions. Density of the core foam ranged from 0.31 to 0.67 $g/cm^3$ and void content fraction 0.51 to 0.71. The maximum flexural strength was 92.7 MPa at 12.5 wt.% of jute fiber content, and the maximum flexural modulus was 7.58 GPa at 30.0 wt.%. Cost analysis was also conducted. The cost to enhance the flexural strength of the applied structure was estimated to be $0.010USD/m^3/MPa$ for 12.5 wt.% fiber content.

Experimental and numerical investigation of fiber-reinforced slag-based geopolymer precast tunnel lining segment

  • Arass Omer Mawlod;Dillshad Khidhir Hamad Amen Bzeni
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.47-59
    • /
    • 2024
  • In this study, a new sustainable material was proposed to prepare precast tunnel lining segments (TLS), which were produced using a fiber-reinforced slag-based geopolymer composite. Slag was used as the geopolymer binder. In addition, polypropylene and carbon fibers were added to reinforce TLSs. TLSs were examined in terms of flexural performance, load-deflection response, ductility, toughness, crack characteristics, and tunnel boring machine (TBM) thrust force. Simultaneously, numerical simulation was performed using finite element analysis. The mechanical characteristics of the geopolymer composite with a fiber content of 1% were used. The results demonstrated that the flexural performance and load-deflection response of the precast TLSs were satisfactory. Furthermore, the numerical results were capable of predicting and realistically capturing the structural behavior of precast TLSs. Therefore, fiber-reinforced slag-based geopolymer composites can be applied as precast TLSs.

Structural Characteristics and Field Application of 'Delta Deck' Composite Bridge (복합소재 교량 바닥판 '델타데크'의 구조적 특성과 현장적용)

  • 이성우;박신전;김병석;정규상
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.201-208
    • /
    • 2004
  • To substitute conventional reinforced-concrete bridge deck, glass composite precast bridge deck - Delta Deck/sup TM/, which possesses advantages of light weight, high strength, corrosion resistance and durability, is developed for the DB24 truck load. Pultruded composite bridge deck is designed and fabricated. To verify serviceability and structural safety, finite element analysis, structural testing such as flexural test, local fatigue test, flexural fatigue test and field tests are conducted. In this paper structural characteristics of developed deck and its field application in Korea is presented.

  • PDF

Flexural Performance of PHC Piles with Infilled concrete and Longitudinal Reinforcing Bars (속채움 콘크리트 및 길이방향 철근으로 보강된 PHC 파일의 휨성능)

  • Han, Sun-Jin;Lee, Jungmin;Kim, Min-Seok;Kim, Jae-Hyun;Kim, Kang Su;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.77-84
    • /
    • 2021
  • In this study, flexural tests of prestressed high strength spun concrete (PHC) piles reinforced with infilled concrete and longitudinal rebars were conducted, where the longitudinal rebar ratio and the presence of sludge formed on the inner surface of PHC pile were set as key test variables. A total of six PHC pile specimens were manufactured, and their flexural behaviors including failure mode, crack pattern, longitudinal strain distribution in a section and end slip between external PHC pile and infilled concrete were measured and discussed in detail. The test results revealed that the flexural stiffness and strength increased as the longitudinal rebar ratio became larger, and that the sludge formed on the inner surface of PHC pile did not show any detrimental effect on the flexural performance. In addition to the experimental approach, this study presents a nonlinear flexural analysis model considering compatibility conditions and strain and stress distributions of the PHC piles and infilled concrete. The rationality of the nonlinear flexural analysis model was verified by comparing it with test results, and it appeared that the proposed model well evaluated the flexural behavior of PHC piles reinforced with infilled concrete and longitudinal rebars with a good accuracy.

Evaluation of Thermal Degradation of CFRP Flexural Strength at Elevated Temperature (온도 상승에 따른 탄소 복합재의 굽힘 강도 저하 평가)

  • Hwang Tae-Kyung;Park Jae-Beom;Lee Sang-Yun;Kim Hyung-Geun;Park Byung-Yeol;Doh Young-Dae
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.20-29
    • /
    • 2005
  • To evaluate the flexural deformation and strength of composite motor case above the glass transition temperature$(T_g),\;170^{\circ}C$, of resin material, a finite element analysis(FEA) model in which material non-linearity and progressive failure mode were considered was proposed. The laminated flexural specimens which have the same lay-up and thickness as the composite motor case were tested by 4-point bending test to verify the validity of FEA model. Also. mechanical properties in high temperature were evaluated to obtain the input values for FEA. Because the material properties related to resin material were highly deteriorated in the temperature range beyond $T_g$, the flexural stiffness and strength of laminated flexural specimen in $200^{\circ}C$ were degraded by also $70\%\;and\;80\%$ in comparison with normal temperature results. Above $T_g$, the failure mode was changed from progressive failure mode initiated by matrix cracking at $90^{\circ}$ ply in bottom side and terminated by delamination at the center line of specimen to fiber compressive breakage mode at top side. From stress analysis, the progressive failure mechanism was well verified and the predicted bending stiffness and strength showed a good agreement with the test results.

Analysis of the Reinforced I section UHPCC (Ulrea High Performance Cementitous Composites) beam without stirrup (전단철근이 없는 I형 휨보강 UHPCC 보의 거동해석)

  • Kim Sung Wook;Han Sang Muk;Kang Su Tae;Kong Jeong Shick;Kang Jun Hyung;Jun Sang Eun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.409-412
    • /
    • 2004
  • Over last decade extensive researches have been undertaken on the strength behaviour of Fiber Reinforced Concrete(FRC) structures. But the use of Ultra-High Strength Steel Fiber Cementitious Concrete Composites is in its infancy and there is a few experiments, analysis method and design criteria on the structural elements constructed with this new generation material which compressive strength is over 150 MPa and characteristic behaviour on the failure status is ductile. The objective of this paper is to investigate and analyze the behaviour of reinforced rectangular structural members constructed with ultra high performance cementitious composites (UHPCC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The variables of test specimens were shear span ratio, reinforcement ratio and fiber quantity. Even if there were no shear stirrups in test specimens, most influential variable to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone could be defined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF