• Title/Summary/Keyword: flexible test behavior

Search Result 106, Processing Time 0.028 seconds

Design and consturction of single drilled shaft foundation (단일 현장타설말뚝 기초의 설계 및 시공)

  • Jeon, Kyung-Soo;Kim, Kyung-Suk;Kim, Jeong-Yeul
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.86-100
    • /
    • 2006
  • The single drilled shaft foundation has been used in the other countries, but has not used in South Korea at all This foundation is very effective and economic method in South Korea which is easy to meet a good rock mass within 50m depth from the ground We have many experiences to construct 1.52 5m drilled shaft foundations and ability to construct 30m drilled shaft foundation without special efforts The soil behavior is nonlinear, but it can be proposed in linear in practical purpose on bridges. The elastic modulus of soil can be rationally obtained by the method of Road Bridge Design Manual in South Korea using the Schmertmann(1970)'s proposal, and the elastic modulus of rock can be obtained by the field test. In seismic design the column and drilled shaft must be restricted to the elastic design because the behavior of this foundation is flexible and the arrangement of the rebars makes the various defect In this paper the design criteria is compared with FHWA design criteria, and the design criteria is proposed in consistent with Road Bridge Design Manual in South Korea. The single drilled shaft foundation of a test bridge was constructed in the Iksan-Jangsoo highway, and we checked its stability, workability and economy

  • PDF

A Study on the Analysis of 3 Dimensional Substrate Behaviour of Complex Environmental Deterioration and the Analysis of Results (복합열화분석용 3차원 거동대응성 시험을 통한 결과분석)

  • Song, Je-Young;Seo, Hyun-Jae;Kim, Bum-Soo;Choi, Eun-Kyu;Lee, Jung-Hun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.219-220
    • /
    • 2017
  • Current domestic waterproofing market in Korea mainly uses single-ply waterproofing materials comprised of coatings or waterproof sheets and two or more-ply composite waterproofing methods. In order to evaluate these types of composite waterproofing systems, a new test equipment and method that incorporates various deterioration conditions (joint displacement, chemical exposure, water pressure etc) was developed. In a comparison testing, the results showed that flexible type materials have higher response performance towards joint displacement than the hardened material. Furthermore, the importance of securing the stability of the waterproofing method in the vulnerable over-lap joint areas of waterproofing sheets is emphasized.

  • PDF

Effect of Pile Head Constraint on Lateral Behavior of Single Flexible Pile in Non-homogeneous Sand (비균질 사질토 지반에서 단일 휨성말뚝의 수평거동에 대한 말뚝 두부 구속효과 연구)

  • 김병탁;김영수;정성관
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.65-80
    • /
    • 1999
  • This paper shows the results of a series of model tests on the behavior of single flexible pile, which is subjected to lateral load, in non-homogeneous Nak-Dong River sands, consisting of two layers. The purpose of the present paper is to investigate the effects of ratio of lower layer thickness to embedded pile length, ratio of soil modulus of upper layer to lower one, and pile head constraint condition on the characteristics of lateral behavior of single pile. These effects can be quantified only by the results of model tests. Based on the results of model tests, in non-homogeneous sand, it was found that the lateral behavior depends upon the ratio of soil modulus of upper layer to lower one. And, in respect of deflection, it was found that the relationship between the deflection ratio of non-homogeneous to homogeneous sand and the ratio of lower layer thickness to embedded pile length can be fitted to exponential function of H/L and lateral load by model tests results. Also, in respect of maximum bending moment, it was found that the relationship H/L and $MBM_{fixed-head}/MBM_{free-head}$ can be fitted to linear function of H/L by model test results.

  • PDF

A Comparison of Behavior of the Roadbeds of Ballasted & Concrete Track with the Cyclic Loading (자갈궤도와 콘크리트궤도에서의 하중재하에 따른 노반거동 비교)

  • Choi, Chan-Yong;Lee, Sung-Heok;Eum, Ki-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • The track systems installed in Korea railway consist of two types on ballasted track or ballastless track. In this study, it was compared with difference of the behaviors at roadbed with cyclic loading through full scale model test. From the results of model tests, loading distribution ratio of the concrete slab track become more widely distributed than ballasted track, and loading distribution ratio at concrete track was about 30:20:15. The concrete slab track is likely to behavior of the rigid plate, while ballasted track is such as flexible pavement. The vertical stresses of upper roadbed with traffic cyclic loading in concrete track were measured about 30 kPa or less. It was a scene very similar to the results of the field train running test. The vertical stress at concrete track was occurred approximately 4 times smaller than ballasted track. Also, the soil velocities with cyclic loading at the slab track were occurred about 0.3 cm/sec or less, its 8 times smaller than ballasted track.

  • PDF

Dynamic analysis of eddy current brake system for design evaluation (와전류 제동장치 설계검증을 위한 동역학적 해석)

  • Chung, Kyung-Ryul;Kim, Kyung-Taek;Paik, Jin-Sung;Benker, T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.110-115
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body for the carbody was implemented in the Multi-body-Simulation Program SIMPACK. The ECB frame was modelled both as flexible body and as rigid body. Four different driving conditions were analyzed. In this study dynamic behavior in general were performed to evaluate the design of eddy current brake system and specially the effect of damper was also studied. A comparison of simulations with and without damper shows that the damper have most effect for lower speed. The simulation results will be verified by comparison with measured data from on line test and also used for improving design.

  • PDF

Highly Sensitive and Transparent Pressure Sensor Using Double Layer Graphene Transferred onto Flexible Substrate

  • Chun, Sungwoo;Kim, Youngjun;Jin, Hyungki;Jung, Hyojin;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.229.2-229.2
    • /
    • 2014
  • Graphene, an allotrope of carbon, is a two-dimensional material having a unique electro-mechanical property that shows significant change of the electrical conductance under the applied strain. In addition of the extraordinary mechanical strength [1], graphene becomes a prospective candidate for pressure sensor technology [2]. However, very few investigations have been carried out to demonstrate characteristics of graphene sensor as a device form. In this study, we demonstrate a pressure sensor using graphene double layer as an active channel to generate electrical signal as the response of the applied vertical pressure. For formation of the active channel in the pressure sensor, two single graphene layers which are grown on Cu foil (25 um thickness) by the plasma enhanced chemical vapor deposition (PECVD) are sequentially transformed to the poly-di-methyl-siloxane (PDMS) substrate. Dry and wet transfer methods are individually employed for formation of the double layer graphene. This sensor geometry results a switching characteristic which shows ~900% conductivity change in response to the application of pulsed pressure of 5 kPa whose on and off duration is 3 sec. Additionally, the functional reliability of the sensor confirms consistent behavior with a 200-cycle test.

  • PDF

Mechanical Performance Study of Flexible Protection Tube for Submarine Cables (해저케이블용 유연보호튜브의 기계적 성능 연구)

  • Kyeong Soo Ahn;Yun Jae Kim;Jin-wook Choe;Jinseok Lim;Sung Woong Choi
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.101-107
    • /
    • 2024
  • Demand for submarine cable is increasing due to advances in submarine power transmission technology and submarine cable manufacturing technology. Submarine cable use various types of protective equipment to prevent problems such as high maintenance costs in the event of cable damage and power outages during maintenance periods. Among them, flexible protection tube is a representative protective equipment to protect cables and respond to external forces such as waves and current. The flexible protection tube is made of polyurethane 85A hyperelastic material, so the calculation of mechanical behavior is carried out using mechanical properties based on experimental results. In this study, a study was conducted to determine the bending performance and tensile performance of flexible protection tube through analytical methods. The physical properties obtained through the multiaxial tensile test of polyurethane 85A were used for the analysis. Bending and tensile performance were determined for the maximum bending moment standard of 15 kN·m and the tensile load standard of 50 kN. As a result, it was confirmed that when the maximum bending moment of 15 kN·m of the flexible protection tube occurred, the bending performance of the MBR was secured at 13 m and when a tensile load of 50 kN, it was applied the maximum vertical displacement was 968 mm, confirming that the tensile performance was secured.

Impact Performance of High Grade Steel Barrier for Hazardous Area and Strengthening Method (위험구간용 고규격 강재 방호울타리의 충돌 거동 및 보강 방법)

  • Ko, Man Gi;Kim, Kee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.407-417
    • /
    • 2001
  • To secure good visibility various steel flexible barriers were introduced and constructed in the area where a highway runs in parallel with a railroad. However, none of the flexible barriers was proven to satisfy the performance criteria for the impact condition of $14tonf-80km/h-15^{\circ}$ set forth by Korea design guide. Thus, in this study, the impact performance of the flexible barriers was investigated by using Barrier VII program, which was most widely used for the preliminary design of barriers. From the analytical results, it has been found that none of the barriers satisfied the stiffness requirement while the Type C barrier showed stiffer behavior than the others. Thus, the way to strengthen the installed Type C barrier was experimentally investigated. The method of partially filling concreter inside the pst was efficient to satisfy the performance criteria for the impact condition of $14tonf-80km/h-15^{\circ}$.

  • PDF

A Study on the Fabrication of Flexible Composite Electrodes and Its Bonding Characteristics According to Surface Roughness (유연 복합재료 전극 제조 및 표면조도에 따른 접착 특성에 대한 연구)

  • Lee, Han-Young;Jung, Kyung-Chae;Han, Min-Gu;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.242-247
    • /
    • 2014
  • The fabrication of flexible electrodes coated on the surface of a dielectric elastomer film, which is a type of electroactive polymer (EAP), was carried out. Controlled amounts of Xylitol powder were added (10, 30, 50 and 70 wt%) to the commercial conductive polymer (PEDOT:PSS) to enhance resilience of the electrode. To check resilience of the fabricated composite electrodes, tensile tests were carried out using silicone films coated with the polymer electrodes. From the test results, it was found that 70 wt% Xylitol containing conductive polymer had excellent elongation and high failure strains. Furthermore, surface of the silicone film was uniformly polished with various abrading papers to enhance the wettability of the conductive polymers on the surface of the silicone film. It was found that the silicone film polished with #120 abrading paper had the best wettability and guaranteed excellent bonding behavior.

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF