• Title/Summary/Keyword: flexible robot

Search Result 361, Processing Time 0.026 seconds

Recent Advances in Soft Magnetic Actuators and Sensors using Magnetic Particles (자성 분말 기반 소프트 자성 액츄에이터 및 센서 연구 동향)

  • Song, Hyeonseo;Lee, Hajun;Kim, Junghyo;Kim, Jiyun
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.509-517
    • /
    • 2021
  • Smart materials capable of changing their characteristics in response to stimuli such as light, heat, pH, and electric and magnetic fields are promising for application to flexible electronics, soft robotics, and biomedicine. Compared with conventional rigid materials, these materials are typically composed of soft materials that improve the biocompatibility and allow for large and dynamic deformations in response to external environmental stimuli. Among them, smart magnetic materials are attracting immense attention owing to their fast response, remote actuation, and wide penetration range under various conditions. In this review, we report the material design and fabrication of smart magnetic materials. Furthermore, we focus on recent advances in their typical applications, namely, soft magnetic actuators, sensors for self-assembly, object manipulation, shape transformation, multimodal robot actuation, and tactile sensing.

Mission Planning for Underwater Survey with Autonomous Marine Vehicles

  • Jang, Junwoo;Do, Haggi;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • With the advancement of intelligent vehicles and unmanned systems, there is a growing interest in underwater surveys using autonomous marine vehicles (AMVs). This study presents an automated planning strategy for a long-term survey mission using a fleet of AMVs consisting of autonomous surface vehicles and autonomous underwater vehicles. Due to the complex nature of the mission, the actions of the vehicle must be of high-level abstraction, which means that the actions indicate not only motion of the vehicle but also symbols and semantics, such as those corresponding to deploy, charge, and survey. For automated planning, the planning domain definition language (PDDL) was employed to construct a mission planner for realizing a powerful and flexible planning system. Despite being able to handle abstract actions, such high-level planners have difficulty in efficiently optimizing numerical objectives such as obtaining the shortest route given multiple destinations. To alleviate this issue, a widely known technique in operations research was additionally employed, which limited the solution space so that the high-level planner could devise efficient plans. For a comprehensive evaluation of the proposed method, various PDDL-based planners with different parameter settings were implemented, and their performances were compared through simulation. The simulation result shows that the proposed method outperformed the baseline solutions by yielding plans that completed the missions more quickly, thereby demonstrating the efficacy of the proposed methodology.

An Adaptive PD Control Method for Mobile Robots Using Gradient Descent Learning (경사감소학습을 이용한 이동로봇의 적응 PD 제어 방법)

  • Choi, Young-Kiu;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1679-1687
    • /
    • 2016
  • Mobile robots are effectively used in industrial fields that require flexible manufacturing systems. Mobile robots have to move with mechanical loads such as product parts along the specified paths, and are usually equipped with kinematic controllers. When the loads and nonlinear frictions are too high, satisfactory control performances can not be expected with the kinematic controllers, so some dynamic controllers have been developed. Conventional dynamic controllers require the exact weights and locations of the loads; however, the loads are frequently changed and unknown so that the control performances of the conventional controllers are limited. This paper proposes an adaptive PD control method using gradient descent learning to have sufficient dynamic control performance for unknown loads. Simulation studies have been conducted for various load conditions to verify that the adaptive PD control method have much broader convergence region than the convention method.

A Robotic Milking Manipulator for Teat-cup Attachment Modules (착유컵 자동 착탈을 위한 매니퓰레이터 개발)

  • Lee, D. W.;Kim, W.;Kim, H. T.;Kim, D. W.;Choi, D. Y.;Han, J. D.;Kwon, D. J.;Lee, S. K.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.163-168
    • /
    • 2001
  • A manipulator for test-cup attachment modules, which was a part of a robot milking system, was developed to reduce cost and labor for cow milking processing. A Cartesian coordinate manipulator was designed for the milking process, because it was quite flexible and can be constructed more economically than any other configuration. The manipulator was made use of DC motors, screws for power transmission, a RS422 interface system for the transmission of coordinate values and a one-chip microprocessor, 89C52. Performance tests of the manipulator were conducted to measure experimentally the precision of all axes. Some of the results are as follows. 1. The Cartesian coordinate manipulator was designed and built. Dimension of the three perpendicular axes (X, Y, and Z) and one arm’s axis(W) to pick up and transfer the modules were 700㎜$\times$450㎜$\times$550㎜$\times$650㎜. The arm’s axis moved the teat-cup attachment module, which attached four teat-cup to four teats, detached four teat-cup from four teats, was designed and manufactured by using CAD, CAM and CNC. 3. After 10 replications of exercising the manipulator, mean precision values(positioning error) of X, Y, Z axes wee 0.48㎜, 0.20㎜, 0.19㎜, respectively. Therefore, we conclude the axes to have a precision better than 0.5㎜, had no problem to operate correctly the milking manipulator.

  • PDF

Locomotive Mechanism Based on Pneumatic Actuators for the Semi-Autonomous Endoscopic System (자율주행 내시경을 위한 공압 구동방식의 이동메카니즘)

  • Kim, Byungkyu;Kim, Kyoung-Dae;Lee, Jinhee;Park, Jong-Oh;Kim, Soo-Hyun;Hong, Yeh-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.345-350
    • /
    • 2002
  • In recent years, as changing the habit of eating, the pathology in the colon grows up annually. The colonoscopy is generalized, but if requires much time to acquire a dexterous skill to perform an operation and the procedure is painful to the patient. biomedical and robotic researchers are developing a locomotive colonoscope that can travel safe1y in colon. In this paper, we propose a new actuator and concept of semi-autonomous colonoscope. The micro robot comprises camera and LED for diagnosis, steer- ing system to pass through the loop, pneumatic actuator and bow-shaped flexible supporters to control a contact force and to pass over haustral folds in colon. For locomotion of semi-autonomous colonoscope, we suggest an actuator that is based on impact force between a cylinder and a piston. In order to validate the concept and the performance of the actuator, we carried out the simulation of moving characteristics and the preliminary experiments in rigid pipes and on the colon of pig.

Study of a Low-Temperature Bonding Process for a Next-Generation Flexible Display Module Using Transverse Ultrasound (횡 초음파를 이용한 차세대 플렉시블 디스플레이 모듈 저온 접합 공정 연구)

  • Ji, Myeong-Gu;Song, Chun-Sam;Kim, Joo-Hyun;Kim, Jong-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.395-403
    • /
    • 2012
  • This is direct bonding many of the metal bumps between FPCB and HPCB substrate. By using an ultrasonic horn mounted on an ultrasonic bonding machine, it is possible to bond gold pads onto the FPCB and HPCB at room temperature without an adhesive like ACA or NCA and high heat and solder. This ultrasonic bonding technology minimizes damage to the material. The process conditions evaluated for obtaining a greater bonding strength than 0.6 kgf, which is commercially required, were 40 kHz of frequency; 0.6MPa of bonding pressure; and 0.5, 1.0, 1.5, and 2.0 s of bonding time. The peel off test was performed for evaluating bonding strength, which was found to be more than 0.80 kgf.

Intelligent Digital Redesign for Dynamical Systems with Uncertainties (불확실성을 갖는 동적 시스템에 대한 지능형 디지털 재설계)

  • Cho, Kwang-Lae;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.667-672
    • /
    • 2003
  • In this paper, we propose a systematic method for intelligent digital redesign of a fuzzy-model-based controller for continuous-time nonlinear dynamical systems which may also contain uncertainties. The continuous-time uncertain TS fuzzy model is first constructed to represent the uncertain nonlinear systems. An extended parallel distributed compensation(EPDC) technique is then used to design a fuzzy-model-based controller for both stabilization and tracking. The designed continuous-time controller is then converted to an equivalent discrete-time controller by using an integrated intelligent digital redesign method. This new design technique provides a systematic and effective framework for integration of the fuzzy-model-based control theory and the advanced digital redesign technique for nonlinear dynamical systems with uncertainties. Finally, The single link flexible-joint robot arm is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

Analysis of the Valuation Model for the state-of-the-art ICT Technology (첨단 ICT 기술에 대한 가치평가 모델 분석)

  • Oh, Sun-Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.705-710
    • /
    • 2021
  • Nowadays, cutting-edge information communication technology is the genuine core technology of the fourth Industrial Revolution and is still making great progress rapidly among various technology fields. The biggest issue in ICT fields is the machine learning based Artificial Intelligence applications using big data in cloud computing environment on the basis of wireless network, and also the technology fields of autonomous control applications such as Autonomous Car or Mobile Robot. Since value of the high-tech ICT technology depends on the surrounded environmental factors and is very flexible, the precise technology valuation method is urgently needed in order to get successful technology transfer, transaction and commercialization. In this research, we analyze the characteristics of the high-tech ICT technology and the main factors in technology transfer or commercialization process, and propose the precise technology valuation method that reflects the characteristics of the ICT technology through phased analysis of the existing technology valuationmodel.

Micro-LED Mass Transfer using a Vacuum Chuck (진공 척을 이용한 마이크로 LED 대량 전사 공정 개발)

  • Kim, Injoo;Kim, Yonghwa;Cho, Younghak;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2022
  • Micro-LED is a light-emitting diode smaller than 100 ㎛ in size. It attracts much attention due to its superior performance, such as resolution, brightness, etc., and is considered for various applications like flexible display and VR/AR. Micro-LED display requires a mass transfer process to move micro-LED chips from a LED wafer to a target substrate. In this study, we proposed a vacuum chuck method as a mass transfer technique. The vacuum chuck was fabricated with MEMS technology and PDMS micro-mold process. The spin-coating approach using a dam structure successfully controlled the PDMS mold's thickness. The vacuum test using solder balls instead of micro-LED confirmed the vacuum chuck method as a mass transfer technique.

Recent Advances on TENG-based Soft Robot Applications (정전 발전 기반 소프트 로봇 응용 최신 기술)

  • Zhengbing, Ding;Dukhyun, Choi
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.378-393
    • /
    • 2022
  • As an emerging power generation technology, triboelectric nanogenerators (TENGs) have received increasing attention due to their boundless promise in energy harvesting and self-powered sensing applications. The recent rise of soft robotics has sparked widespread enthusiasm for developing flexible and soft sensors and actuators. TENGs have been regarded as promising power sources for driving actuators and self-powered sensors, providing a unique approach for the development of soft robots with soft sensors and actuators. In this review, TENG-based soft robots with different morphologies and different functions are introduced. Among them, the design of biomimetic soft robots that imitate the structure, surface morphology, material properties, and sensing/generating mechanisms of nature has greatly benefited in improving the performance of TENGs. In addition, various bionic soft robots have been well improved compared to previous driving methods due to the simple structure, self-powering characteristics, and tunable output of TENGs. Furthermore, we provide a comprehensive review of various studies within specific areas of TENG-enabled soft robotics applications. We first explore various recently developed TENG-based soft robots and a comparative analysis of various device structures, surface morphologies, and nature-inspired materials, and the resulting improvements in TENG performance. Various ubiquitous sensing principles and generation mechanisms used in nature and their analogous artificial TENG designs are demonstrated. Finally, biomimetic applications of TENG enabled in tactile displays as well as in wearable devices, artificial electronic skin and other devices are discussed. System designs, challenges and prospects of TENGs-based sensing and actuation devices in the practical application of soft robotics are analyzed.