Browse > Article
http://dx.doi.org/10.7234/composres.2022.35.6.378

Recent Advances on TENG-based Soft Robot Applications  

Zhengbing, Ding (School of Mechanical Engineering, Sungkyunkwan University)
Dukhyun, Choi (School of Mechanical Engineering, Sungkyunkwan University)
Publication Information
Composites Research / v.35, no.6, 2022 , pp. 378-393 More about this Journal
Abstract
As an emerging power generation technology, triboelectric nanogenerators (TENGs) have received increasing attention due to their boundless promise in energy harvesting and self-powered sensing applications. The recent rise of soft robotics has sparked widespread enthusiasm for developing flexible and soft sensors and actuators. TENGs have been regarded as promising power sources for driving actuators and self-powered sensors, providing a unique approach for the development of soft robots with soft sensors and actuators. In this review, TENG-based soft robots with different morphologies and different functions are introduced. Among them, the design of biomimetic soft robots that imitate the structure, surface morphology, material properties, and sensing/generating mechanisms of nature has greatly benefited in improving the performance of TENGs. In addition, various bionic soft robots have been well improved compared to previous driving methods due to the simple structure, self-powering characteristics, and tunable output of TENGs. Furthermore, we provide a comprehensive review of various studies within specific areas of TENG-enabled soft robotics applications. We first explore various recently developed TENG-based soft robots and a comparative analysis of various device structures, surface morphologies, and nature-inspired materials, and the resulting improvements in TENG performance. Various ubiquitous sensing principles and generation mechanisms used in nature and their analogous artificial TENG designs are demonstrated. Finally, biomimetic applications of TENG enabled in tactile displays as well as in wearable devices, artificial electronic skin and other devices are discussed. System designs, challenges and prospects of TENGs-based sensing and actuation devices in the practical application of soft robotics are analyzed.
Keywords
Triboelectric nanogenerators; Soft Robitics; Self-powered; Electronic skin; Wearable;
Citations & Related Records
Times Cited By KSCI : 22  (Citation Analysis)
연도 인용수 순위
1 Zhang, J.-H., Li, Y., Du, J., Hao, X., and Wang, Q., "Bio-inspired hydrophobic/cancellous/hydrophilic Trimurti PVDF Matbased Wearable Triboelectric Nanogenerator Designed by Self-assembly of Electro-pore-creating," Nano Energy, Vol. 61, 2019, pp. 486-495.   DOI
2 Yu, B., Yu, H., Huang, T., Wang, H., and Zhu, M., "A Biomimetic Nanofiber-based Triboelectric Nanogenerator with an Ultrahigh Transfer Charge Density," Nano Energy, Vol. 48, 2018, pp. 464-470.   DOI
3 Kim, H.J., Kim, J.H., Jun, K.W., Kim, J.H., Seung, W.C., Kwon, O.H., Park, J.Y., Kim, S.W., and Oh, I.K., "Silk Nanofiber-networked Bio-triboelectric Generator: Silk Bio-TEG," Advanced Energy Materials, Vol. 6, No. 8, 2016, pp. 1502329.
4 Chen, B.D., Tang, W., He, C., Deng, C.R., Yang, L.J., Zhu, L.P., Chen, J., Shao, J.J., Liu, L., and Wang, Z.L., "Water Wave Energy Harvesting and Self-powered Liquid-surface Fluctuation Sensing Based on Bionic-jellyfish Triboelectric Nanogenerator," Materials Today, Vol. 21, No. 1, 2018, pp. 88-97.   DOI
5 Lai, Y.C., Deng, J., Niu, S., Peng, W., Wu, C., Liu, R., Wen, Z., and Wang, Z.L., "Electric Eel-skin-inspired Mechanically Durable and Super-stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic-skin Applications," Advanced Materials, Vol. 28, No. 45, 2016, pp. 10024-10032.   DOI
6 Wang, F., Ren, Z., Nie, J., Tian, J., Ding, Y., and Chen, X., "Self-powered Sensor Based on Bionic Antennae Arrays and Triboelectric Nanogenerator for Identifying Noncontact Motions," Advanced Materials Technologies, Vol. 5, No. 1, 2020, pp. 1900789.
7 Dong, K., Wu, Z., Deng, J., Wang, A.C., Zou, H., Chen, C., Hu, D., Gu, B., Sun, B., and Wang, Z.L., "A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing," Advanced Materials, Vol. 30, No. 43, 2018, pp. 1804944.
8 Bu, T., Xiao, T., Yang, Z., Liu, G., Fu, X., Nie, J., Guo, T., Pang, Y., Zhao, J., Xi, F., Zhang, C., and Wang, Z.L., "Stretchable Triboelectric-photonic Smart Skin for Tactile and Gesture Sensing," Advanced Materials, Vol. 30, No. 16, 2018, pp. 1800066.
9 Pu, X., Liu, M., Chen, X., Sun, J., Du, C., Zhang, Y., Zhai, J., Hu, W., and Wang, Z.L., "Ultrastretchable, Transparent Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Tactile Sensing," Science Advances, Vol. 3, No. 5, 2017, pp. e1700015.
10 Jang, J., Lee, J., Jang, J.H., and Choi, H., "A Triboelectric-based Artificial Basilar Membrane to Mimic Cochlear Tonotopy," Advanced Healthcare Materials, Vol. 5, No. 19, 2016, pp. 2481- 2487.   DOI
11 Liu, Y., Zhong, J., Li, E., Yang, H., Wang, X., Lai, D., Chen, H., and Guo, T., "Self-powered Artificial Synapses Actuated by Triboelectric Nanogenerator," Nano Energy, Vol. 60, 2019, pp. 377-384.   DOI
12 Wu, C., Kim, T.W., Park, J.H., Koo, B., Sung, S., Shao, J., Zhang, C., and Wang, Z.L., "Self-powered Tactile Sensor with Learning and Memory," ACS Nano, Vol. 14, No. 2, 2019, pp. 1390-1398.   DOI
13 Li, D., Niu, D., Ye, G., Lei, B., Jiang, W., Luo, F., Chen, J., Li, X., Qu, S., and Liu, H., "Intergrated Shape Memory Alloys Soft Actuators with Periodic and Inhomogeneous Deformations by Modulating Elastic Tendon Structures," Advanced Engineering Materials, Vol. 22, No. 12, 2020, pp. 2000640.
14 Li, H., Yao, J., Zhou, P., Chen, X., Xu, Y., and Zhao, Y., "Highforce Soft Pneumatic Actuators Based on Novel Casting Method for Robotic Applications," Sensors and Actuators A: Physical, Vol. 306, 2020, pp. 111957.
15 Sivaperuman Kalairaj, M., Cai, C.J., and Ren, H., "Untethered Origami Worm Robot with Diverse Multi-Leg Attachments and Responsive Motions under Magnetic Actuation," Robotics, Vol. 10, No. 4, 2021, pp. 118.
16 Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., and Whitesides, G.M., "Soft Robotics for Chemists," Angewandte Chemie, Vol. 123, No. 8, 2011, pp. 1930-1935.   DOI
17 Wani, O.M., Zeng, H., and Priimagi, A., "A Light-driven Artificial Flytrap," Nature Communications, Vol. 8, No. 1, 2017, pp. 1-7.   DOI
18 Tang, Y., Chi, Y., Sun, J., Huang, T.-H., Maghsoudi, O. H., Spence, A., Zhao, J., Su, H., and Yin, J., "Leveraging Elastic Instabilities for Amplified Performance: Spine-inspired Highspeed and High-force Soft Robots," Science Advances, Vol. 6, No. 19, 2020, pp. eaaz6912.
19 Burroughs, M.L., Beauwen Freckleton, K., Abbott, J.J., and Minor, M.A., "A Sarrus-based Passive Mechanism for Rotorcraft Perching," Journal of Mechanisms and Robotics, Vol. 8, No. 1, 2016,
20 Lu, H., Hong, Y., Yang, Y., Yang, Z., and Shen, Y., "Battery-less Soft Millirobot that Can Move, Sense, and Communicate Remotely by Coupling the Magnetic and Piezoelectric Effects," Advanced Science, Vol. 7, No. 13, 2020, pp. 2000069.
21 Yue, Y., Wang, Q., Ma, Z., Wu, Z., Zhang, X., Li, D., Shi, Y., and Su, B., "Neuron-Inspired Soft Robot Teams and Their NonContact Electric Signal Transmission Based on Electromagnetic Induction," Soft Robotics, 2022.
22 Ebrahimi, N., Bi, C., Cappelleri, D. J., Ciuti, G., Conn, A. T., Faivre, D., Habibi, N., Hosovsky, A., Iacovacci, V., Khalil, I. S., Magdanz, V., Mesra, S., Pawashe, C., Rashififar, R., Soto-Rodriguez, P.E.D., Fekete, Z., and Jafari, A., "Magnetic Actuation Methods in Bio/soft Robotics," Advanced Functional Materials, Vol. 31, No. 11, 2021, pp. 2005137.
23 Meng, J., Li, H., Zhao, L., Lu, J., Pan, C., Zhang, Y., and Li, Z., "Triboelectric Nanogenerator Enhanced Schottky Nanowire Sensor for Highly Sensitive Ethanol Detection," Nano Letters, Vol. 20, No. 7, 2020, pp. 4968-4974.   DOI
24 Rong, X., Zhao, J., Guo, H., Zhen, G., Yu, J., Zhang, C., and Dong, G., "Material Recognition Sensor Array by Electrostatic Induction and Triboelectric Effects," Advanced Materials Technologies, Vol. 5, No. 9, 2020, pp. 2000641.   DOI
25 Lei, R., Shi, Y., Ding, Y., Nie, J., Li, S., Wang, F., Zhai, H., Chen, X., and Wang, Z.L., "Sustainable High-voltage Source Based on Triboelectric Nanogenerator with a Charge Accumulation Strategy," Energy & Environmental Science, Vol. 13, No. 7, 2020, pp. 2178-2190.   DOI
26 Yang, D., Kong, X., Ni, Y., Ren, Z., Li, S., Nie, J., Chen, X., and Zhang, L., "Ionic Polymer-metal Composites Actuator Driven by the Pulse Current Signal of Triboelectric Nanogenerator," Nano energy, Vol. 66, 2019, pp. 104139.
27 Li, Z., Zheng, Q., Wang, Z.L., and Li, Z., "Nanogenerator-based Self-powered Sensors for Wearable and Implantable Electronics," Research, Vol. 2020, 2020, pp. 1-25.
28 Li, Z.B., Li, H.Y., Fan, Y.J., Liu, L., Chen, Y.H., Zhang, C., and Zhu, G., "Small-sized, Lightweight, and Flexible Triboelectric Nanogenerator Enhanced by PTFE/PDMS Nanocomposite Electret," ACS Applied Materials & Interfaces, Vol. 11, No. 22, 2019, pp. 20370-20377.   DOI
29 Tao, J., Bao, R., Wang, X., Peng, Y., Li, J., Fu, S., Pan, C., and Wang, Z.L., "Self-powered Tactile Sensor Array Systems Based on the Triboelectric Effect," Advanced Functional Materials, Vol. 29, No. 41, 2019, pp. 1806379.
30 Hua, Q., Sun, J., Liu, H., Bao, R., Yu, R., Zhai, J., Pan, C., and Wang, Z.L., "Skin-inspired Highly Stretchable and Conformable Matrix Networks for Multifunctional Sensing," Nature Communications, Vol. 9, No. 1, 2018, pp. 1-11.
31 Sun, W., Li, B., Zhang, F., Fang, C., Lu, Y., Gao, X., Cao, C., Chen, G., Zhang, C., and Wang, Z.L., "TENG-Bot: Triboelectric Nanogenerator Powered Soft Robot Made of Uni-directional Dielectric Elastomer," Nano Energy, Vol. 85, 2021, pp. 106012.
32 Wang, Z.L., "Triboelectric Nanogenerators as New Energy Technology and Self-powered Sensors-principles, Problems and Perspectives," Faraday Discussions, Vol. 176, 2014, pp. 447-458.   DOI
33 Liu, D., Zhou, L., Wang, Z.L., and Wang, J., "Triboelectric Nanogenerator: from Alternating Current to Direct Current," Iscience, Vol. 24, No. 1, 2021, pp. 102018.
34 Fabish, T.J., and Duke, C.B., "Molecular Charge States and Contact Charge Exchange in Polymers," Journal of Applied Physics, Vol. 48, No. 10, 1977, pp. 4256-4266.   DOI
35 Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S. M., Tao, H., Islam, A., Yu, K.J., Kim, T.-I., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.-J., Keum, H., McCormick, M., Liu, P., Zhang, Y.-W., Omenetto, F.G., Huang, Y., Cleman, T., and Rogers, J.A., "Epidermal Electronics," Science, Vol. 333, No. 6044, 2011, pp. 838-843.   DOI
36 Peng, L., Zhang, Y., Wang, J., Wang, Q., Zheng, G., Li, Y., Chen, Z., Chen, Y., Jiang, L., and Wong, C.-P., "Slug-inspired Magnetic Soft Millirobot Fully Integrated with Triboelectric Nanogenerator for On-board Sensing and Self-powered Charging," Nano Energy, Vol. 99, 2022, pp. 107367.
37 Xie, Y., Wang, S., Niu, S., Lin, L., Jing, Q., Yang, J., Wu, Z., and Wang, Z.L., "Grating-structured Freestanding Triboelectric-layer Nanogenerator for Harvesting Mechanical Energy at 85% Total Conversion Efficiency," Advanced Materials, Vol. 26, No. 38, 2014, pp. 6599-6607.   DOI
38 Jin, T., Sun, Z., Li, L., Zhang, Q., Zhu, M., Zhang, Z., Yuan, G., Chen, T., Tian, Y., Hou, X., and Lee, C., "Triboelectric Nanogenerator Sensors for Soft Robotics Aiming at Digital Twin Applications," Nature Communications, Vol. 11, No. 1, 2020, pp. 1-12.   DOI
39 Chen, J., Han, K., Luo, J., Xu, L., Tang, W., and Wang, Z.L., "Soft robots with Self-powered Configurational Sensing," Nano Energy, Vol. 77, 2020, pp. 105171.
40 Chen, S., Pang, Y., Yuan, H., Tan, X., and Cao, C., "Smart Soft Actuators and Grippers Enabled by Self-Powered Tribo-Skins," Advanced Materials Technologies, Vol. 5, No. 4, 2020, pp. 1901075.
41 Fan, F.-R., Tian, Z.-Q., and Wang, Z.L., "Flexible Triboelectric Generator," Nano Energy, Vol. 1, No. 2, 2012, pp. 328-334.   DOI
42 Yang, Y., Lin, L., Zhang, Y., Jing, Q., Hou, T.-C., and Wang, Z.L., "Self-powered Magnetic Sensor Based on a Triboelectric Nanogenerator," ACS Nano, Vol. 6, No. 11, 2012, pp. 10378-10383.   DOI
43 Wang, S., Lin, L., and Wang, Z.L., "Nanoscale Triboelectriceffect-enabled Energy Conversion for Sustainably Powering Portable Electronics," Nano Letters, Vol. 12, No. 12, 2012, pp. 6339-6346.   DOI
44 Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., and Wang, Z.L., "Transparent Triboelectric Nanogenerators and Self-powered Pressure Sensors Based on Micropatterned Plastic Films," Nano Letters, Vol. 12, No. 6, 2012, pp. 3109-3114.   DOI
45 Wu, C., Wang, A., Ding, W., Guo, H., and Wang, Z., "Triboelectric Nanogenerator: A Foundation of the Energy for the New Era", Advanced Energy Materials, Vol. 9, 2019, 1802906.
46 Wang, Z., "Triboelectric Nanogenerator (TENG)-Sparking an Energy and Sensor Revolution", Advanced Energy Materials, Vol. 10, 2020, pp. 2000137.
47 Wang, Z., and Jian, Y., "Heat Transport of Electrokinetic Flow in Slit Soft Nanochannels," Micromachines, Vol. 10, No. 1, 2019, pp. 34.
48 Cao, B., Wang, P., Rui, P., Wei, X., Wang, Z., Yang, Y., Tu, X., Chen, C., Wang, Z., and Yang, Z., "Broadband and Output-Controllable Triboelectric Nanogenerator Enabled by Coupling Swing-Rotation Switching Mechanism with Potential Energy Storage/Release Strategy for Low-Frequency Mechanical Energy Harvesting," Advanced Energy Materials, Vol. 12, 2022, 2202627.
49 Jiang, D., Liu, G., Li, W., Bu, T., Wang, Y., Zhang, Z., Pang, Y., Xu, S., Yang, H., and Zhang, C., "A Leaf-shaped Triboelectric Nanogenerator for Multiple Ambient Mechanical Energy Harvesting," IEEE Transactions on Power Electronics, Vol. 35, No. 1, 2019, pp. 25-32.   DOI
50 Zheng, L., Dong, S., Nie, J., Li, S., Ren, Z., Ma, X., Chen, X., Li, H., and Wang, Z.L., "Dual-stimulus Smart Actuator and Robot Hand Based on a Vapor-responsive PDMS Film and Triboelectric Nanogenerator," ACS Applied Materials & Interfaces, Vol. 11, No. 45, 2019, pp. 42504-42511.   DOI
51 Yang, H., Deng, M., Tang, Q., He, W., Hu, C., Xi, Y., Liu, R., and Wang, Z.L., "A Nonencapsulative Pendulum-like Paper-based Hybrid Nanogenerator for Energy Harvesting," Advanced Energy Materials, Vol. 9, No. 33, 2019, pp. 1901149.
52 Cheng, X., Tang, W., Song, Y., Chen, H., Zhang, H., and Wang, Z.L., "Power Management and Effective Energy Storage of Pulsed Output from Triboelectric Nanogenerator," Nano Energy, Vol. 61, 2019, pp. 517-532.
53 Wang, Z.L., "On Maxwell's Displacement Current for Energy and Sensors: the Origin of Nanogenerators," Materials Today, Vol. 20, No. 2, 2017, pp. 74-82.   DOI
54 Chen, X., Jiang, T., Yao, Y., Xu, L., Zhao, Z., and Wang, Z.L., "Stimulating Acrylic Elastomers by a Triboelectric Nanogeneratortoward Self-powered Electronic Skin and Artificial Muscle," Advanced Functional Materials, Vol. 26, No. 27, 2016, pp. 4906-4913.   DOI
55 Qu, X., Ma, X., Shi, B., Li, H., Zheng, L., Wang, C., Liu, Z., Fan, Y., Chen, X., Li, Z., and Wang, Z.L., "Refreshable Braille Display System Based on Triboelectric Nanogenerator and Dielectric Elastomer," Advanced Functional Materials, Vol. 31, No. 5, 2021, pp. 2006612.
56 Shi, Y., Wang, F., Tian, J., Li, S., Fu, E., Nie, J., Lei, R., Ding, Y., Chen, X., and Wang, Z.L., "Self-powered Electro-tactile System for Virtual Tactile Experiences," Science Advances, Vol. 7, No. 6, 2021, pp. abe2943.
57 Shlomy, I., Divald, S., Tadmor, K., Leichtmann-Bardoogo, Y., Arami, A., and Maoz, B.M., "Restoring Tactile Sensation Using a Triboelectric Nanogenerator," ACS Nano, Vol. 15, No. 7, 2021, pp. 11087-11098.   DOI
58 Wang, Z.L., Jiang, T., and Xu, L., "Toward the Blue Energy Dream by Triboelectric Nanogenerator Networks," Nano Energy, Vol. 39, 2017, pp. 9-23.
59 Chen, B., Yang, Y., and Wang, Z.L., "Scavenging Wind Energy by Triboelectric Nanogenerators," Advanced Energy Materials, Vol. 8, No. 10, 2018, pp. 1702649.
60 Xi, F., Pang, Y., Liu, G., Wang, S., Li, W., Zhang, C., and Wang, Z.L., "Self-powered Intelligent Buoy System by Water Wave Energy for Sustainable and Autonomous Wireless Sensing and Data Transmission," Nano Energy, Vol. 61, 2019, pp. 1-9.   DOI
61 Khan, U., and Kim, S.-W., "Triboelectric Nanogenerators for Blue Energy Harvesting," ACS Nano, Vol. 10, No. 7, 2016, pp. 6429-6432.   DOI
62 Zhao, J., Zhen, G., Liu, G., Bu, T., Liu, W., Fu, X., Zhang, P., Zhang, C., and Wang, Z.L., "Remarkable Merits of Triboelectric Nanogenerator than Electromagnetic Generator for Harvesting Small-amplitude Mechanical Energy," Nano Energy, Vol. 61, 2019, pp. 111-118.   DOI
63 Askari, H., Khajepour, A., Khamesee, M.B., Saadatnia, Z., and Wang, Z.L., "Piezoelectric and Triboelectric Nanogenerators: Trends and Impacts," Nano Today, Vol. 22, 2018, pp. 10-13.   DOI
64 Liu, Y., Chen, B., Li, W., Zu, L., Tang, W., and Wang, Z.L., "Bioinspired Triboelectric Soft Robot Driven by Mechanical Energy," Advanced Functional Materials, Vol. 31, No. 38, 2021, pp. 2104770.
65 Ding, W., Wang, A.C., Wu, C., Guo, H., and Wang, Z.L., "Human-machine Interfacing Enabled by Triboelectric Nanogenerators and Tribotronics," Advanced Materials Technologies, Vol. 4, No. 1, 2019, pp. 1800487.
66 Dharmasena, R., Jayawardena, K., Saadi, Z., Yao, X., Bandara, R., Zhao, Y., and Silva, S.R.P., "Energy Scavenging and Powering E-skin Functional Devices," Proceedings of the IEEE, Vol. 107, No. 10, 2019, pp. 2118-2136.   DOI
67 Pu, X., Guo, H., Chen, J., Wang, X., Xi, Y., Hu, C., and Wang, Z.L., "Eye Motion Triggered Self-powered Mechnosensational Communication System Using Triboelectric Nanogenerator," Science advances, Vol. 3, No. 7, 2017, pp. e1700694.
68 Guo, X., Pei, W., Wang, Y., Chen, Y., Zhang, H., Wu, X., Yang, X., Chen, H., Liu, Y., and Liu, R., "A Human-machine Interface Based on Single Channel EOG and Patchable Sensor," Biomedical Signal Processing and Control, Vol. 30, 2016, pp. 98-105.   DOI
69 Belkacem, A.N., Shin, D., Kambara, H., Yoshimura, N., and Koike, Y., "Online Classification Algorithm for Eye-movementbased Communication Systems Using two Temporal EEG Sensors," Biomedical Signal Processing and Control, Vol. 16, 2015, pp. 40-47.   DOI
70 Vandhana, P., "A Novel Efficient Human Computer Interface Using an Electrooculogram," International Journal of Research in Engineering and Technology, Vol. 3, No. 4, 2014, pp. 799-803.
71 He, T., Sun, Z., Shi, Q., Zhu, M., Anaya, D.V., Xu, M., Chen, T., Yuce, M.R., Thean, A.V.-Y., and Lee, C., "Self-powered Glovebased Intuitive Interface for Diversified Control Applications in Real/Cyber Space," Nano Energy, Vol. 58, 2019, pp. 641-651.   DOI
72 Kang, S., Cho, S., Shanker, R., Lee, H., Park, J., Um, D.-S., Lee, Y., and Ko, H., "Transparent and Conductive Nanomembranes with Orthogonal Silver Nanowire Arrays for Skin-attachable Loudspeakers and Microphones," Science Advances, Vol. 4, No. 8, 2018, pp. aas8772.
73 Song, Y., Min, J., Yu, Y., Wang, H., Yang, Y., Zhang, H., and Gao, W., "Wireless Battery-free Wearable Sweat Sensor Powered by Human Motion," Science Advances, Vol. 6, No. 40, 2020, pp. aay9842.
74 Shi, Q., and Lee, C., "Self-powered Bio-inspired Spider-net-coding Interface Using Single-electrode Triboelectric Nanogenerator," Advanced Science, Vol. 6, No. 15, 2019, pp. 1900617.
75 Xiao, X., Zhang, X., Wang, S., Ouyang, H., Chen, P., Song, L., Yuan, H., Ji, Y., Wang, P., and Li, Z., "Honeycomb Structure Inspired Triboelectric Nanogenerator for Highly Effective Vibration Energy Harvesting and Self-powered Engine Condition Monitoring," Advanced Energy Materials, Vol. 9, No. 40, 2019, pp. 2070035.
76 Gunawardhana, K.S.D., Wanasekara, N.D., and Dharmasena, R.I.G., "Towards Truly Wearable Systems: Optimizing and Scaling up Wearable Triboelectric Nanogenerators," Iscience, Vol. 23, No. 8, 2020, pp. 101360.
77 Yang, H., Fan, F.R., Xi, Y., and Wu, W., "Design and Engineering of High-performance Triboelectric Nanogenerator for Ubiquitous Unattended Devices," EcoMat, Vol. 3, No. 2, 2021, pp. e12093.
78 Chen, H., Song, Y., Guo, H., Miao, L., Chen, X., Su, Z., and Zhang, H., "Hybrid Porous Micro Structured Finger Skin Inspired Self-powered Electronic Skin System for Pressure Sensing and Sliding Detection," Nano Energy, Vol. 51, 2018, pp. 496-503.   DOI
79 Li, X., Mu, J., He, J., Fan, X., Zhang, Q., Hou, X., Geng, W., Zhang, W., and Chou, X., "Bioinspired Helical Triboelectric Nanogenerators for Energy Conversion of Motion," Advanced Materials Technologies, Vol. 5, No. 4, 2020, pp. 1900917.
80 Zhou, Q., Lee, K., Kim, K.N., Park, J.G., Pan, J., Bae, J., Baik, J.M., and Kim, T., "High Humidity-and Contamination-resistant Triboelectric Nanogenerator with Superhydrophobic Interface," Nano Energy, Vol. 57, 2019, pp. 903-910.   DOI
81 Yoo, D., Park, S.-C., Lee, S., Sim, J.-Y., Song, I., Choi, D., Lim, H., and Kim, D.S., "Biomimetic Anti-reflective Triboelectric Nanogenerator for Concurrent Harvesting of Solar and Raindrop Energies," Nano Energy, Vol. 57, 2019, pp. 424-431.   DOI
82 Yao, G., Xu, L., Cheng, X., Li, Y., Huang, X., Guo, W., Liu, S., Wang, Z.L., and Wu, H., "Bioinspired Triboelectric Nanogenerators as Self-powered Electronic Skin for Robotic Tactile Sensing," Advanced Functional Materials, Vol. 30, No. 6, 2020, pp. 1907312.
83 Lee, J., Sul, H., Lee, W., Pyun, K. R., Ha, I., Kim, D., Park, H., Eom, H., Yoon, Y., Jung, J., Lee, D., and Ko, S.H., "Stretchable Skin-like Cooling/heating Device for Reconstruction of Artificial Thermal Sensation in Virtual Reality," Advanced Functional Materials, Vol. 30, No. 29, 2020, pp. 1909171.
84 Shi, Q., Zhang, Z., Chen, T., and Lee, C., "Minimalist and Multi-functional Human Machine Interface (HMI) Using a Flexible Wearable Triboelectric Patch," Nano Energy, Vol. 62, 2019, pp. 355-366.   DOI