• Title/Summary/Keyword: flexible organic solar cell

검색결과 34건 처리시간 0.037초

Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell (유기태양전지의 효율 및 수명 향상을 위한 기능성 계면 소재 연구)

  • Hong, Kihyon;Park, Sun-Young;Lim, Dong Chan
    • Applied Chemistry for Engineering
    • /
    • 제25권5호
    • /
    • pp.447-454
    • /
    • 2014
  • Organic solar cells (OSCs) have intensively studied in recent years due to their advantages such as cost effectiveness and possibility of applications in flexible devices. In spite of the high power conversion efficiency (PCE) of 10 %, the OSCs still have a draw back of their low environmental stability due to the oxidization of aluminum cathode and etching of transparent conducting oxide as electrode. To solve these problems, the inverted structured OSCs (I-OSCs) having greatest potential for achieving an improvement of device performances are suggested. Therefore, there are a lot of studies to develope of interface layer based on organic/inorganic materials for the electron transport layer (ETL) and passivation layer, significant advancements in I-OSCs have driven the development of interface functional materials including electron transport layer. Recent efforts to employing 2D/3D zinc oxide (ZnO) based ETL into I-OSCs have produced OSCs with a power conversion efficiency level that matches the efficiency of ~9 %. In this review, the technical issues and recent progress of ZnO based ETL in I-OSCs to enhancement of device efficiency and stability in terms of materials, process and characterization have summarized.

Fabrication of Flexible Solid-state Dye-sensitized $TiO_2$ Nanotube Solar Cell Using UV-curable NOA

  • Park, Ik-Jae;Park, Sang-Baek;Kim, Ju-Seong;Jin, Gyeong-Seok;Hong, Guk-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.396-396
    • /
    • 2012
  • $TiO_2$ anatase nanotube arrays (NTAs) were grown by electrochemical anodization and followed annealing of Ti foil. Ethylene glycol/$NH_4F$-based organic electrolyte was used for electrolyte solution and using second anodization process to obtain free-standing NTAs. After obtaining NTAs, ITO film was deposited by sputtering process on bottom of NTAs. UV-curable NOA was used for attach free-standing NTAs on flexible plastic substrate (PEN). Solid state electrolyte (spiro-OMeTAD) was coated via spin-coating method on top of attached NTAs. Ag was deposited as a counter electrode. Under AM 1.5 simulated sunlight, optical characteristics of devices were investigated. In order to use flexible polymer substrate, processes have to be conducted at low temperature. In case of $TiO_2$ nano particles (NPs), however, crystallization of NPs at high temperature above $450^{\circ}C$ is required. Because NTAs were conducted high temperature annealing process before NTAs transfer to PEN, it is favorable for using PEN as flexible substrate. Fabricated flexible solid-state DSSCs make possible the preventing of liquid electrolyte corrosion and leakage, various application.

  • PDF

Highly Flexible and Transparent ISO/Ag/ISO Multilayer Grown by Roll-to-roll Sputtering System

  • Cho, Da-Young;Shin, Yong-Hee;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.278.2-278.2
    • /
    • 2014
  • We have investigated the highly flexible and transparent Si-doped $In_2O_3$(ISO)/Ag/ISO multilayer grown on polyethylene terephthalate (PET) substrates using a roll-to-roll sputtering system. The electrical and optical properties of ISO/Ag/ISO multilayer electrodes depended on the insertion of a nano-size Ag layer. Due to the high conductivity of a nano-size Ag layer, the optimized ISO/Ag/ISO multilayer electrodes showed the lowest resistivity of $3.679{\times}10^{-5}Ohm-cm$, even though the ISO/Ag/ISO multilayer electrodes was sputtered at room temperature. Furthermore, the ISO/Ag/ISO multilayer electrodes exhibited a high transmittance of 86.33%, because of the anti-reflection effect, comparable to Sn-doped $In_2O_3$ (ITO) electrodes. In addition, the ISO/Ag/ISO multilayer electrodes had a very smooth surface morphology without surface defects and showed good flexibility. The flexible OSCs fabricated on ISO(30nm)/Ag(8nm)/ISO(30nm) multilayer electrode showed a power conversion efficiency of 3.272%. This result indicates that the ISO/Ag/ISO multilayer is a promising transparent conducting electrode for flexible OSCs.

  • PDF

Characteristics of ITO/Ag-Pd-Cu/ITO Multilayer Electrodes for High Efficiency Organic Solar Cells

  • Kim, Hyo-Jung;Kang, Sin-Bi;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.257.1-257.1
    • /
    • 2014
  • We investigated characteristics of ITO/Ag-Pd-Cu (APC)/ITO multilayer electrodes prepared by direct current magnetron sputtering for use as an anode in organic solar cells (OSCs). To optimize electrical properties of ITO/APC/ITO multilayer, we fabricated the ITO/APC/ITO multilayer at a fixed ITO thickness of 30 nm as a function of APC thickness. Compare to the surface of Ag layer on ITO, the APC had a smooth surface morphology. At optimized APC thickness of 12 nm, the ITO/APC/ITO multilayer exhibited a sheet resistance of $6{\Omega}/square$ and optical transmittance of 84.15% at a wavelength of 550 nm which is comparable to conventional ITO/Ag/ITO multilayer. However, the APC-based ITO multilayer showed a higher average transmittance in a visible region than the Ag-based ITO multilayer. The higher average transmittance of ITO/APC/ITO multilayer indicated the multilayer is suitable anode for organic solar cells with P3HT:PCBM active layer. OSCs fabricated on the optimized ITO/ACP/ITO multilayer exhibited a better performance with a fill factor of 64.815%, a short circuit current of $8.107mA/cm^2$, an open circuit voltage of 0.59 V, and power conversion efficiency (3.101%) than OSC with ITO/Ag/ITO multilayer (2.8%).

  • PDF

Synergy study on charge transport dynamics in hybrid organic solar cell: Photocurrent mapping and performance analysis under local spectrum

  • Hong, Kai Jeat;Tan, Sin Tee;Chong, Kok-Keong;Lee, Hock Beng;Ginting, Riski Titian;Lim, Fang Sheng;Yap, Chi Chin;Tan, Chun Hui;Chang, Wei Sea;Jumali, Mohammad Hafizuddin Hj
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1564-1570
    • /
    • 2018
  • Charge transport dynamics in ZnO based inverted organic solar cell (IOSC) has been characterized with transient photocurrent spectroscopy and localised photocurrent mapping-atomic force microscopy. The value of maximum exciton generation rate was found to vary from $2.6{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=79.7A\;m^{-2}$) to $2.9{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=90.8A\;m^{-2}$) for devices with power conversion efficiency ranging from 2.03 to 2.51%. These results suggest that nanorods served as an excellent electron transporting layer that provides efficient charge transport and enhances IOSC device performance. The photovoltaic performance of OSCs with various growth times of ZnO nanorods have been analysed for a comparison between AM1.5G spectrum and local solar spectrum. The simulated PCE of all devices operating under local spectrum exhibited extensive improvement with the gain of 13.3-3.7% in which the ZnO nanorods grown at 15 min possess the highest PCE under local solar with the value of 2.82%.

Effects of Passivation Thin Films by Spray Coatings on Properties of Flexible CIGS Solar Cells (스프레이코팅법에 의한 패시베이션 박막이 플렉시블 CIGS 태양전지의 특성에 미치는 영향)

  • Lee, Sang Hee;Park, Byung Min;Kim, Ki Hong;Chang, Young Chul;Pyee, Jaeho;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제23권3호
    • /
    • pp.57-61
    • /
    • 2016
  • In order to protect the solar cells from the moisture and oxygen, we evaluated the electrical and optical properties for the $Cu(In,Ga)Se_2$ (CIGS) solar cells which were prepared by the spray coating method. Generally, the EVA (ethylene-vinyl acetate) films are laminated to protect the CIGS flexible solar cells, which results in a high cost process due to complicated devices. In this study, we tried to prepare the protection layers of the flexible CIGS flexible solar cells by using spray coating method instead of conventional laminating films in order to reduce the device weight as well as the process time. The CIGS solar cells with spray coating method showed an enhanced efficiency than the before treated sample (2.77% to 2.93%) and relatively proper water vapor transmission rate of the solar cells about 62.891 gm/[$m^2-day$].

Small Molecules Based on Tetrazine or DPP for OPV Application (Tetrazine/DPP를 갖는 유기태양전지용 신규 단분자에 관한 연구)

  • Kim, Jin-A;Hyun, Jina;Lee, Kyeong K.;Lee, Sungkoo;Lim, Eunhee
    • Applied Chemistry
    • /
    • 제15권2호
    • /
    • pp.105-108
    • /
    • 2011
  • Organic photovoltaic cells (OPVs) have attracted considerable attention due to their low cost, light-weight and flexible characteristics. Small molecules have advantages of well-defined structure and easy synthesis. In this work, new tetrazine, DPP, and furan-based oligomers for organic solar cell were synthesized by Suzuki coupling reaction. The structures were confirmed by NMR and optical and electronic properties were investigated by UV-vis absorption.

Light Scattering Effect of Incorporated PVP/Ag Nanoparticles on the Performance of Small-Molecule Organic Solar Cells

  • Heo, Il-Su;Park, Da-Som;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.221-221
    • /
    • 2012
  • Small-molecule organic photovoltaic cells have recently attracted growing attention due to their potential for the low-cost fabrication of flexible and lightweight solar modules. The PVP/Ag nanoparticles were synthesized by the reaction of poly vinylpyrrolidone (PVP) and silver nitrate at $150^{\circ}C$. In the reaction, the size of the nanoparticles was controlled by relative mole fractions between PVP and Ag. The PVP/Ag nanoparticles with various sizes were then spin coated on the patterned ITO glass prior to the deposition of the PEDOT:PSS hole transport layer. The scattering of the incident light caused by these incorporated nanoparticles resulted in an increase in the path length of the light through the active layer and hence the enhancement of the light absorption. This scattering effect increased as the size of the nanoparticles increased, but it was offset by the decrease in total transmittance caused by the non-transparent nanoparticles. As a result, the maximum power conversion efficiency, 0.96% which was the value enhanced by 14% compared to the cell without incorporation of nanoparticles, was obtained when the mole fraction of PVP:Ag was 24:1 and the size of the nanoparticles was 20~40 nm.

  • PDF

Development trends of Solar cell technologies for Small satellite (소형위성용 태양전지 개발 동향 및 발전 방향)

  • Choi, Jun Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제22권5호
    • /
    • pp.310-316
    • /
    • 2021
  • Conventional satellites are generally large satellites that are multi-functional and have high performance. However, small satellites have been gradually drawing attention since the recent development of lightweight and integrated electric, electronic, and optical technologies. As the size and weight of a satellite decrease, the barrier to satellite development is becoming lower due to the cost of manufacture and cheaper launch. However, solar panels are essential for the power supply of satellites but have limitations in miniaturization and weight reduction because they require a large surface area to be efficiently exposed to sunlight. Space solar cells must be manufactured in consideration of various space environments such as spacecraft and environments with solar thermal temperatures. It is necessary to study structural materials for lightweight and high-efficiency solar cells by applying an unfolding mechanism that optimizes the surface-to-volume ratio. Currently, most products are developed and operated as solar cell panels for space applications with a triple-junction structure of InGaP/GaAs/Ge materials for high efficiency. Furthermore, multi-layered junctions have been studied for ultra-high-efficiency solar cells. Flexible thin-film solar cells and organic-inorganic hybrid solar cells are advantageous for material weight reduction and are attracting attention as next-generation solar cells for small satellites.

High Transparent, High Mobility MoO3 Intergraded InZnO Films for Use as a Transparent Anode in Organic Solar cells

  • Kim, Hyo-Jung;Kang, Sin-Bi;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.343-343
    • /
    • 2014
  • We reported on the electrical, optical, structural and morphological properties fabricated by co-sputtering for use as an anode for organic solar cells (OSCs). By adjusting RF and DC power of $MoO_3$ and IZO targets during co-sputtering, we fabricated the $MoO_3$-IZO electrode with graded content of the $MoO_3$ on the IZO films. At optimized $MoO_3$ thickness of 20 nm, the $MoO_3$ graded IZO electrode showed a higher mobility ($33cm^2/V-Sec$) than directly deposited $MoO_3$ on IZO film ($26cm^2/V-Sec$). At visible range (400nm~800nm), optical transmittance of the $MoO_3$ graded IZO electrode is higher than that of directly deposited $MoO_3$ on IZO film. High mobility of $MoO_3$ graded on IZO is attributed to less interface scattering between $MoO_3$ and IZO. To investigate the feasibility of $MoO_3$ graded IZO films, we fabricated conventional P3HT:PCBM based OSCs with $MoO_3$ graded IZO as a function of MoO3 thickness. The OSC fabricated on the $MoO_3$ graded IZO anode showed a fill factor of 66.53%, a short circuit current of $8.121mA/cm^2$, an open circuit voltage of 0.592 V, and a power conversion efficiency of 3.2% comparable to OSC fabricated on ITO anode and higher than directly deposited $MoO_3$ on IZO film. We suggested possible mechanism to explain the high performance of OSCs with a $MoO_3$ graded IZO.

  • PDF