• Title/Summary/Keyword: flexible display

Search Result 724, Processing Time 0.025 seconds

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

Fabrication of Fabric-based Wearable Devices with High Adhesion Properties using Electroplating Process (전해 도금을 이용한 높은 접착 특성을 갖는 섬유 기반 웨어러블 디바이스 제작)

  • Kim, Hyung Gu;Rho, Ho Kyun;Cha, Anna;Lee, Min Jung;Park, Jun-beom;Jeong, Tak;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • In order to produce wearable displays with high adhesion while maintaining flexible characteristics, the adhesive method using electro plating method was carried out. Laser lift-off (LLO) transcription was also used to remove sapphire substrates from LEDs bonded to fibers. Afterwards, the SEM and EDS data of the sample, which conducted the adhesion method using electro plating, confirmed that copper actually grows through the lattice of the fiber fabric to secure the light source and fiber. The adhesion characteristics of copper were checked using Universal testing machine (UTM). After plating adhesion, the characteristics of the LLO transcription process completed and the LED without the transcription process were compared using probe station. The electroluminescence (EL) according to the enhanced current was measured to check the characteristics of the light source after the process. As the current increases, the temperature rises and the bandgap decreases, so it was confirmed that the spectrum shifted. In addition, the change in the electrical characteristics of the samples according to the radius change is confirmed using probe station. The radius strain also had mechanical strength that copper could withstand bending stress, so the Vf variation was measured below 6%. Based on these results, it is expected that it will be applied to batteries, catalysts, and solar cells that require flexibility as well as wearable displays, contributing to the development of wearable devices.

Prototype Fabrication and Performance Evaluation of Metal-oxide Nanoparticle Sensor for Detecting of Hazardous and Noxious Substances Diluted in Sea Water (해수 중 유해위험물질 검출을 위한 금속산화물 나노 입자 센서의 시작품 제작 및 성능 평가)

  • Sangsu An;Changhan Lee;Jaeha Noh;Youngji Cho;Jiho Chang;Sangtae Lee;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.23-29
    • /
    • 2022
  • To detect harmful chemical substances in seawater, we fabricated a prototype sensor and evaluated its performance. The prototype sensor consisted of a detector, housing, and driving circuit. We built the detector by printing an Indium-Tin-Oxide (ITO) nanoparticle film on a flexible substrate, and it had two detection parts for simultaneous detection of temperature and HNS concentration. The housing connected the detector and the driving circuit and was made of Teflon material to prevent chemical reactions that may affect sensor performance. The driving circuit supplied electric power, and display measured data using a bridge circuit and an Arduino board. We evaluated the sensor performances such as response (ΔR), the limit of detection (LOD), response time, and errors to confirm the specification.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF