DOI QR코드

DOI QR Code

Prototype Fabrication and Performance Evaluation of Metal-oxide Nanoparticle Sensor for Detecting of Hazardous and Noxious Substances Diluted in Sea Water

해수 중 유해위험물질 검출을 위한 금속산화물 나노 입자 센서의 시작품 제작 및 성능 평가

  • Sangsu An (Major of Nano-semiconductor Engineering, Korea maritime University) ;
  • Changhan Lee (Major of Nano-semiconductor Engineering, Korea maritime University) ;
  • Jaeha Noh (Major of Nano-semiconductor Engineering, Korea maritime University) ;
  • Youngji Cho (Major of Nano-semiconductor Engineering, Korea maritime University) ;
  • Jiho Chang (Major of Nano-semiconductor Engineering, Korea maritime University) ;
  • Sangtae Lee (Division of Maritime AI & Cyber Security, Korea maritime University) ;
  • Yongmyung Kim (Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering) ;
  • Moonjin Lee (Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering)
  • 안상수 (한국해양대학교 나노반도체공학과) ;
  • 이창한 (한국해양대학교 나노반도체공학과) ;
  • 노재하 (한국해양대학교 나노반도체공학과) ;
  • 조영지 (한국해양대학교 나노반도체공학과) ;
  • 장지호 (한국해양대학교 나노반도체공학과) ;
  • 이상태 (한국해양대학교 해사인공지능․보안학부) ;
  • 김용명 (선박해양플랜트연구소 해양안전환경연구본부 ) ;
  • 이문진 (선박해양플랜트연구소 해양안전환경연구본부 )
  • Received : 2022.11.10
  • Accepted : 2022.12.28
  • Published : 2022.12.31

Abstract

To detect harmful chemical substances in seawater, we fabricated a prototype sensor and evaluated its performance. The prototype sensor consisted of a detector, housing, and driving circuit. We built the detector by printing an Indium-Tin-Oxide (ITO) nanoparticle film on a flexible substrate, and it had two detection parts for simultaneous detection of temperature and HNS concentration. The housing connected the detector and the driving circuit and was made of Teflon material to prevent chemical reactions that may affect sensor performance. The driving circuit supplied electric power, and display measured data using a bridge circuit and an Arduino board. We evaluated the sensor performances such as response (ΔR), the limit of detection (LOD), response time, and errors to confirm the specification.

해수 중 존재하는 유해화학물질 검출을 목적으로 센서 시작품 제작하고 성능을 확인하였다. 센서 시작품은 검지부, 기구부, 구동부로 구성하였다. 센서의 검지부는 ITO (Indium-Tin-Oxide) 금속산화물 나노입자 (metal oxide nanoparticle) 필름을 기판위에 인쇄하여 제작하였고, 온도와 HNS 농도를 동시에 검출할 수 있도록 2개의 검출 부분을 갖도록 설계하였다. 센서의 기구부는 검지부와 구동부를 연결하며, 검출에 영향을 줄 수 있는 화학적 반응을 막기 위해 테프론 재질을 이용하여 제작하였고, 특히 검지부의 착탈이 용이하도록 설계 하였다. 구동부는 브릿지 회로와 아두이노 보드를 이용하여 전원 공급과 데이터 측정 및 디스플레이가 가능하도록 제작하였다. 시작품의 성능에 대해서는 기존의 수질 센서를 참고한 성능 사양을 제시하고, 유기용제를 사용한 검지부와 시작품의 동작을 확인하여 응답 (ΔR), 검출하한 (Limit of Detection), 응답시간 (response time), 오차 (error) 등을 평가하였다. 또한 해수 중 동작 특성을 파악하여 설계 사양이 구현되었는지 확인하였다.

Keywords

Acknowledgement

이 논문은 2022년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20150340, 위험·유해물질(HNS)사고 관리기술개발/20210660, 해양산업시설 배출위험유해물질 영향평가 및 관리기술 개발).

References

  1. An, S. S., D. W. Ko, J. H. Noh, C. H. Lee, D. M. Seo, M. J. Lee, and J. H. Chang(2022a), ITO Nanoparticle Chemiresistive Sensor for Detecting Liquid Chemicals Diluted in Brine, Trans. Electr. Electron. Mater 23, pp. 107-112.  https://doi.org/10.1007/s42341-022-00383-y
  2. An, S. S., J. H. Noh, C. H. Lee, D. M. Seo, M. J. Lee, and J. H. Chang(2022b), Study on the Effect of the Electrode Structure of an ITO Nanoparticle Film Sensor On Operating Performance, J. Sens. Sci. Technol, 31(2), pp. 90-95.  https://doi.org/10.46670/JSST.2022.31.2.90
  3. Badamasi, Y. A.(2014), The Working Principle Of An Arduino, 11th International Conference on Electronics, Computer and Computation (ICECCO). 
  4. Choi, Y. J., K. I. Jang, T. M. Lee, Y. S. Kim, and K. Y. Kim(2006), Micro Pattern Screen Printing, Journal of KSPE, May, pp. 589-890. 
  5. Cornell, J. A. and R. D. Berger(1987), Factors that Influence the Value of the Coefficient of Determination in Simple Linear and Nonlinear Regression Models, Phytopathology, 77(1), p. 63. 
  6. Cunha, I., S. Moreira, and M. M. Santos(2015), Review on hazardous and noxious substances (HNS) involved in marine spill incidents - An online data base hazard Mater Lett, 285, pp. 509-516.  https://doi.org/10.1016/j.jhazmat.2014.11.005
  7. Kim, Y. R., M. J. Lee, J. Y. Jung, T. W. Kim, and D. J. Kim(2019), Initial environmental risk assessment of hazardous and noxious substances (HNS) spill accidents to mitigate its damages, Mar Pollut Bull 139, pp. 205-213.  https://doi.org/10.1016/j.marpolbul.2018.12.044
  8. Kim, H., C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey(1999), Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices, J. Appl. Phys 86, 6451. 
  9. Koo, J. E., J. Y. Jung, S. T. Lee, M. J. Lee, and J. H. Chang(2015), Development of waterborne oil spill sensor based on printed ITO nanocrystals, Mar Pollut Bull 98, pp. 130-136.  https://doi.org/10.1016/j.marpolbul.2015.07.005
  10. Lee, S., J. Y. Jungl, M. J. Lee, and J. H. Chang(2017), An aqueous Ammonia sensor Based on Printed Indium Tin Oxide Layer, Sensors and Materials, 29(1), pp. 57-63. 
  11. Loock, H. -P., P. D. Wentzell(2012), Detection limits of chemical sensors: Applications and misapplications, Sensors and Actuators B 173, pp. 157-163.  https://doi.org/10.1016/j.snb.2012.06.071
  12. Rothschild, A. and Y. Komem(2004), The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors, J. Appl. Phys 95, pp. 6374-6380.  https://doi.org/10.1063/1.1728314
  13. Tan, M. X., P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E. Stanton, and N. S. Lewis(1994), Principles and applications of semiconductor photo electrochemistry, Progress in inorganic chemistry, pp. 21-144. 
  14. Zhang, H. and S. G. Weber(2011), Teflon AF Materials, Fluorous Chemistry, TOPCURRCHEM, p. 308.