• Title/Summary/Keyword: flexible deformation

Search Result 387, Processing Time 0.03 seconds

Fabrication of Vertically Oriented ZnO Micro-crystals array embedded in Polymeric matrix for Flexible Device (수열합성을 이용한 ZnO 마이크로 구조의 성장 및 전사)

  • Yang, Dong Won;Lee, Won Woo;Park, Won IL
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.31-37
    • /
    • 2017
  • Recently, there has been substantial interest in flexible and wearable devices whose properties and performances are close to conventional devices on hard substrates. Despite the advancement on flexible devices with organic semiconductors or carbon nanotube films, their performances are limited by the carrier scattering at the molecular to molecular or nanotube-to-nanotube junctions. Here in this study, we demonstrate on the vertical semiconductor crystal array embedded in flexible polymer matrix. Such structures can relieve the strain effectively, thereby accommodating large flexural deformation. To achieve such structure, we first established a low-temperature solution-phase synthesis of single crystalline 3D architectures consisting of epitaxially grown ZnO constituent crystals by position and growth direction controlled growth strategy. The ZnO vertical crystal array was integrated into a piece of polydimethylsiloxane (PDMS) substrate, which was then mechanically detached from the hard substrate to achieve the freestanding ZnO-polymer composite. In addition, the characteristics of transferred ZnO were confirmed by additional structural and photoluminescent measurements. The ZnO vertical crystal array embedded in PDMS was further employed as pressure sensor that exhibited an active response to the external pressure, by piezoelectric effect of ZnO crystal.

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.

Validation of Permanent Deformation Model for Flexible Pavement using Accelerated Pavement Testing (포장가속시험을 이용한 소성변형예측 모델의 검증)

  • Choi, Jeong Hoon;Seo, Youngguk;Suh, Young Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.491-497
    • /
    • 2009
  • This paper presents the results of accelerated pavement tests (APT) that simulate permanent deformation (rutting) of asphalt concrete pavements under different temperatures and loading courses. Also, finite element (FE) analysis has been conducted to predict the test results. Test section for APT is the same as one of test sections at Korea Expressway Corporation test road and is subjected to a constant moving dual tire wheel load of APT at three different temperatures: 30, 40, $50^{\circ}C$. The moving wheel is applied at different loading courses within a 75cm wide wheel path to account for traffic wandering. Also, the effect of wandering on permanent deformation development is investigated numerically with three wandering schemes. In this study, ABAQUS is adopted to model APT pavement section with plain stain elements and creep strain rate model is used to take into account viscoplastic stain of asphalt concrete mixtures, and elastic layer properties are back-calculated from FWD measurements. Plus, the effect of boundary condition and subgrade on FE permanent deformation predictions is investigated. A full FE model that accounted for subgrade provided more realistic rut depth predictions, indicating subgrade has contributed to surface rutting.

Evaluation of Shear Deformation Energy and Fatigue Performance of Single-layer and Multi-layer Metal Bellows (단층 및 다층 금속 벨로우즈의 전단 변형 에너지 및 피로성능 평가)

  • Kyeong-Seok Lee;Jin-Seok Yu;Young-Soo Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Seismic safety of expansion joints for piping systems has been underscored by water pipe ruptures and leaks resulting from the Gyeongju and Pohang earthquakes. Metal bellows in piping systems are applied to prevent damage from earthquakes and road subsidence in soft ground. Designed with a series of corrugated segments called convolutions, metal bellows exhibit flexibility to accommodate displacements. Several studies have examined variations in convolution shapes and layers based on the intended performance to be evaluated. Nonetheless, the research on the seismic performance of complex bellows having multiple corrugation heights is limited. In this study, monotonic loading tests, cyclic loading tests, and fatigue tests were conducted to evaluate the shear performance in seismic conditions, of metal bellows with variable convolution heights. Single- and triple-layer bellows were considered for the experimentation. The results reveal that triple-layer bellows exhibit larger maximum deformation and fatigue life than single-layer bellows. However, the high stiffness of triple-layer bellows in resisting internal pressure poses certain disadvantages. The convolutions are less flexible at lower displacements and experience leakage at a rate related to the variable height of the convolutions in certain conditions. At lower deformation rates, the fatigue life is rated higher as the number of layers increase. It converges to a similar fatigue life at higher deformation rates.

Changes in Mechanical Properties of Sanitary Nonwoven Fabrics by Chitosan/Nanosilver Mixed Solution Treatment (위생용 부직포의 키토산/은나노 혼합용액 처리에 의한 역학적 특성 변화)

  • Bae, Hyun-Sook
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.163-172
    • /
    • 2010
  • In order to investigate the changes in mechanical properties of sanitary nonwoven fabrics actually used as a top sheet, the fabric was treated with a mixture of chitosan and nanosilver colloidal solution in accordance with the prescribed ratio. The former is a natural polymer with excellent biocompatibility and the latter can give an additional performance while compensating the weaknesses of chitosan of deteriorating adherence efficiency. It was shown that the bending and shearing characteristics of the chitosan/nanosilver treated fabrics decreased, which helped to make it softer, smoother and more flexible. The shape stability and drapability of the treated fabrics improved. As KES-FB system evaluation showed that Koshi was deduced, and both Numeri and Fukurami were increased. Thereby, the chitosan/nanosilver treated fabrics were smoother to provide elasticity. In the change of hand value compared to chitosan only treatment, a better THV was shown in the fabrics treated with chitosan/nanosilver mixed solution than the fabric treated with chitosan alone.

Electro-Optical Characterization of Polymer Dispersed Liquid Crystals for Various Concentrations of Prepolymer (전폴리머 조성에 따른 고분자 분산형 액정의 전기 광학 특성 평가)

  • Yang, Kee-Jeong;Yoon, Do-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.891-895
    • /
    • 2010
  • Polymer dispersed liquid crystal (PDLC) films were prepared by the phase separation method using the liquid crystal (E7) and prepolymers. This work investigated the electro-optical characteristics of various PDLC films. In order to have good contrast ratio, the polymer refractive index must be adjusted to the ordinary refractive index of the liquid crystal. The driving voltage of PDLC films were mainly affected by elastic deformation. E7-Ebecryl810-IOA-TMPTA-HMPPO system had good threshold voltage and driving voltage and E7-Ebecryl810-EHA-PEGDA-HMPPO system had good contrast ratio.

Thermal Analysis of a Motor-Separated Spindle System for High-Speed HMC (모터분리형 초고속 머시닝센터 주축계의 열특성 해석)

  • 김석일;권태균;나상준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.237-242
    • /
    • 2001
  • This paper presents the thermal characteristics analysis of a high-speed HMC spindle system with angular contact ball bearings, built-in motor, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution, heat flow and thermal deformation under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

  • PDF

Study on the spring modeling of circuit breaker with spring operating mechanism (스프링조작기를 가진 고압회로차단기의 스프링 모델링에 관한 연구)

  • Lee, Seung-Kyu;Kim, Seung-Oh;Yoo, Wan-Suk;Sohn, Jeong-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.991-996
    • /
    • 2007
  • Since the performance of the circuit breaker mainly depends on the spring operating mechanism, the analysis of the spring operating mechanism is required. The spring, especially closing spring, stores the deformation energy due to the compression and then accelerates the big loads rapidly in the circuit breaker. To accurately carry out the kinematic and dynamic analysis of the circuit breaker, the precise modeling of the spring behavior is necessary. In this paper, the static stiffness of the spring is captured by using the tester. When the spring is used in the circuit breaker, it is installed horizontally. Therefore, Sine excitation tests are carried out horizontal and vertical direction. Three types of spring models such as a linear spring model, modal spring model, and nodal spring model are suggested and compared with the experimental results.

  • PDF

Development of Falling Weight Deflectometer for Evaluation of Layer Properties of Flexible Pavement (도로포장 구조체의 물성 추정을 위한 FWD의 설계 및 제작)

  • 황성호;손웅희;최경락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.124-130
    • /
    • 2003
  • Many structural evaluation procedures of road and airfield pavements use the Falling Weight Deflectometer (FWD) as a critical element of non-destructive deflection testing. FWD is a trailer mounted device that provides accurate data on pavement response to dynamic wheel loads. A dynamic load is generated by dropping a mass from a variable height onto a loading plate. The magnitude of the load and the pavement deflection are measured by a load celt and geophones. And database concerning pavement damage should be enhanced to analyze loss of thickness asphalt layer caused from the plastic deformation of pavement structure, such as cracking or rutting. The prototype FWD is developed, which consists of chassis system, hydraulic loading system, data acquisition and analysis system. This system subsequently merged to from automation management system and is then validated and updated to produce a working FWD which can actually be used in the field.

A Study on the Stabilizing Process and Structural Characteristics of Cable-Dome Structure (케이블돔 구조물의 안정화 이행과정 및 구조적 거동특성에 관한 연구)

  • 한상을;이경수;이주선;황보석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.260-267
    • /
    • 1999
  • In this paper, We propose the initial shape finding and dynamic analysis of cable dome structure are presented. Cable dome that is consist of three component such as cable, strut and fabric membrane have complex structural characteristics. Main structural system of cable dome is cable-strut tensegric system, and fabric membrane element Is conceived as cladding roof material. One of the important problem of cable dome is shape finding of those subjected to cable and membrane forces, which stabilize the structures. And the other is structural response from external load effect such as snow and wind When cable dome are subjected to dynamic load such as wind load each structural component has many important problem because of their special structural characteristics. One problem is that geometrical nonlinearity should be considered in the dynamic analysis because large deformation is occurred from their flexible characteristic. The other problem is that wrinkling occurs occasionally because cable and membrane elements can not transmit compressive forces. So this paper describe the physical structural response of cable dome structure.

  • PDF