• Title/Summary/Keyword: flat normal connection

Search Result 14, Processing Time 0.018 seconds

GENERIC MINIMAL SUBMANIFOLDS WITH PARALLEL SECTION IN THE NORMAL BUNDLE IMMERSED IN A COMPLEX PROJECTIVE SPACE

  • Choe, Yeong-Wu;Ki, U-Hang;Kon, Masahiro
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.25-33
    • /
    • 1994
  • In [2] we proved that if the minimum of the sectional curvature of a compact real minimal hypersurface of CP$^{m}$ is 1/(2m-1), then M is the geodesic hypersphere. This result was generalized in [8] to the case of M is a generic submanifold with flat normal connection. The purpose of the present paper is to prove a following generalization of theorems in [2] and [8].

  • PDF

An experimental study on the operating performance of facade installed natural circulation type solar thermal system (수직벽면형 무동력 태양열 시스템 작동성능에 관한 실험적 연구)

  • Baek, Nam-Choon;Lee, Wang-Je;Lee, Jin-Kook;Lee, Soon-Myung
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • The operation of the natural circulation type solar heating systems with facade integrated collector was analyzed by experiment. Two different types of flat plate solar collectors were used for these experiments. One was for the normal flat plate solar collector with the size of 1m*2m and the other was for the large size solar collector with $4m^2$(1m*4m). The experiments were carried out to investigate the effect of the series or parallel connection method on the performance of the collectors. As a result, the solar thermal system which is installed on the wall or facade would be applicable for the natural circulation type if the system design reflects various parameters, including collector connecting method(series or parallel), to provide enough vertical height between collector and storage tank, and to reduce pressure loss due to collector and piping network, etc. The natural circulation type of solar thermal system as proposed in this study can increase the system reliability by removing or minimizing the use of the components such as pump, controller, sensors which may cause serious troubles of the system for a long-time operation