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CODIMENSION REDUCTION FOR SUBMANIFOLDS OF
UNIT (4m + 3)-SPHERE AND ITS APPLICATIONS

HyanG Sook Kim AND JIN SUK PAK

ABSTRACT. In this paper we establish codimension reduction theorem for
submanifolds of a (4m+3)-dimensional unit sphere S4™*3 with Sasakian
3-structure and apply it to submanifolds of a quaternionic projective
space.

1. Introduction

As is well-known, for a submanifold M of a Riemannian manifold M , the
codimension of M is said to be reduced if there exists a totally geodesic sub-
manifold 3 of M such that M C M.

In particular, when the ambient manifold is a complex manifold, the inter-
mediate submanifold M is requested to be not only totally geodesic, but also
complex submanifold.

The codimension reduction problem was investigated by Allendoerfer [1] in
the case that the ambient manifold M is a Euclidean space and by Erbacher
[14] in the case that M is a real space form. For submanifolds of a complex
projective space, Cecil [2] proved a codimension reduction theorem for complex
submanifolds. Okumura [14] extended Cecil’s result to real submanifolds by
using the standard submersion method established by Lawson [12] (for real
submanifolds of a complex hyperbolic space, see [8]).

As a quaternionic analogue for real submanifolds of a quaternionic projective
space, Kwon and the second author [11] provided a codimension reduction the-
orem which may correspond to Okumura’s result in [14] (for real submanifolds
of a quaternionic hyperbolic space, see [9]).

On the other hand, in 1982, Okumura [13] studied submanifolds M of an
odd-dimensional sphere with the canonical Sasakian structure {¢, £} to which
the structure vector field ¢ is always tangent and proved that, under some
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additional conditions, if dim(7,, MN@T, M=) is less than that codimension, then
there exists such a totally geodesic ¢-invariant submanifold M that M C M,
where T, M and T, M+ denote the tangent space and the normal space to M at
x € M, respectively. Using this theorem, in his paper [13], Okumura presented
a codimension reduction theorem for real submanifolds of a complex projective
space by means of the standard submersion method due to Lawson [12].

In this paper we first consider a (4m + 3)-dimensional unit sphere with the
canonical Sasakian 3-structure {¢, 1,0} (for definition, see [7, 10, 17]). Let M
be a real submanifold of the space to which the structure vector fields &, 7, ¢
are always tangent. If at each point x € M the tangent space T, M satisfies

¢T,M C T,M, T,M C T,M, 0T,M C T,M,

M is called an invariant submanifold under {¢,1,0}. It is well known that
an invariant submanifold is a manifold with Sasakian 3-structure. We consider
the more general case that at each point « € M T, M and T, M~ satisfy the
condition that dim(7,M N ¢T, M+ N T, M+ N OT, M=) is independent of x.
Such submanifolds involve invariant submanifolds as a special case.

The main purpose of the paper is to study relations between dim(7,M N
¢T, M+ N YT, M+ NOT, M=) and the codimension of M, and to prove that,
under some additional conditions, if dim(7,M N ¢T, M+ NpT, M+ NOT, ML)
is less than the codimension, then there exists a totally geodesic invariant sub-
manifold M’ such that M C M’, which will be used in codimension reducing
for submanifolds of a quaternionic projective space by using the standard sub-
mersion method established by Lawson [12].

All manifolds, submanifolds and geometric objects will be assumed to be
connected, differentiable and of class C'°°, and all maps also be of class C'*° if
not stated otherwise.

2. Submanifolds of a (4m + 3)-dimensional unit sphere

Let us consider a (4m + 3)-dimensional unit sphere S*™*3 as a real hyper-
surface of the real 4(m + 1)-dimensional quaternionic number space Q™*!. For
any point x in S*™ 13, we set

§:E11‘5 77:E2507 <:E31'5

where {E, Eo, E3} denotes the canonical quaternionic Kéhler structure of
Q™TL. Then {£,n,(} becomes a Sasakian 3-structure, namely, £, n and ¢
are mutually orthogonal unit Killing vector fields which satisfy

VyVxé=g(X,8Y —g(Y, X)E,
(2.1) VyVxn=g(X,n)Y —g(Y,X)n,
VyVx(=g(X, Q)Y —g(Y,X)C

for any vector fields X,Y tangent to S4™m+t3, where g denotes the canonical
metric on $4™*3 induced from that of Q™! and V the Riemannian connection
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with respect to ¢g. In this case, putting

(2.2) 60X =Vx¢&, X =Vxn, 60X =Vx(,

it follows that
€ =0, Yn =0, 0C =0,

(2.3) Ve =—0n=¢, 06 =—¢C=mn, ¢n=—9§ =,
[7.¢1 = =2¢, [C.¢] = =2n, [§,n] = =2,

¢’ =—I+fe@€ Y =-I+f0n 0*=-I+fo
(2.4) V=0 + fe@n, 00=v+fR( ¢Y=0+f
0p=—op+ f,0(, 0=+ fe®E Yvo=—-0+f:®@n,

where I denotes the identity transformation and

(2.5) fe(X) =g(§,X), fr(X)=9(n,X), fo(X)=g(CX).

Moreover, from (2.1) and (2.2), we have

(2.6) (Vyo)X =g(X,0)Y —g(Y,X)¢, (Vyy)X =g(X,n)Y —g(Y,X)n,
(Vy0)X = g(X,Q)Y —g(Y,X)¢

for any vector fields X,Y tangent to S¥™T3 (cf. [7, 10, 15, 17]).

Let M be an (n + 3)-dimensional submanifold isometrically immersed in
54m+3 and denote by TM and TM~' the tangent and normal bundle of M,
respectively. We shall delete the isometric immersion 7 : M — S*™*3 and its
differential ¢, in our notations. Let V and V-1 denote the covariant differenti-
ation in M and the normal connection of M in S*™*3  respectively. To each
N, € T,M', we extend N, to a normal vector field N defined in a neigh-
borhood of z. Given an orthonormal basis {(N1)z, ..., (Np)z} of T,M=*, we
denote by H, the Weingarten map with respect to N4, which will be called
the second fundamental tensor associated to N4. If the second fundamental
tensors Hy (A = 1,...,p) vanish identically on M, M is called a totally geo-
desic submanifold. The first normal space N} is defined to be the orthogonal
complement of {N, € T,M~* | Hy = 0} in T, M+ (cf. [4]). If N1,..., N, are
orthonormal normal vector fields in a neighborhood of x € M, they determine
normal connection forms s4p in a neighborhood of x by

P
ViNa=>_ sap(X)Np

B=1

for X tangent to M. Then we have the following Gauss and Weingarten for-
mulas:

p
(2.7)  VxY =VxY + > g(HaX,Y)Na, g(HaX,Y)=g(X,HaY),
Az
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p
(2.8) VxNa=-HaX+ Y sap(X)Np, sap(X)=—spa(X).
B=1

The mean curvature vector field pu of M is defined by

(2.9) Y

The submanifold M is said to be minimal if p vanishes identically on M.
Differentiating (2.9) covariantly, we have

P P
(n+3)Vipu = Z{(XtraceHA)NA + Z(traceHA)sAB(X)NB}.
A=1 B=1

Hence the mean curvature vector field is parallel with respect to the normal
connection V= if and only if

(2.10) X (traceH,y) = Z(traceHB)sAB(X).
B=1

Let us denote by R and REV the curvature tensors for V and V+, respectively.
Since the curvature tensor R for V on S4™+3 is given by

R(X,Y)Z =g(Y,2)X — g(X, 2)Y,

we have the following relations:

(2.11)  (VxHA)Y — (VyHA)X Z{SAB YHRY — sap(Y)HpX},

(2.12)  RMN(X,Y)Na = z,,: g((HaHp — HgHA)X,Y).
B=1

If RN vanishes identically on M, the normal connection of M in S4™*3 is said
to be flat. The normal connection of M is flat if and only if HaHg = HgH4
forall A,B=1,2,...,p (cf. [3]).

For any X € TM and for Na, A+ 1,2,...,p, the transforms ¢ X,y X, 0X
and ¢N 4,1 N4,0N 4 are, respectively, written in the following forms:

(2.13) (i) ¢X =FX + Y u*(X)Na, (i) vX = GX + Y _v*(X)Na,
A=1

p
(i) 0X = HX + > w*(X)Na,
A=1

p p
(214) () ¢Na=-Ua+ Y PipNp, (i) ¥Na=-Va+ > PypNg,
B=1 B=1
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P
(iii) ONo = ~Wa + > P4zNp,
A=1
where {F,G, H} and {P?, P¥ P?} define endomorphisms of TM and T M,

respectively, and {Ua, Va, Wa} and {u?, v, w?} are local tangent vector fields
and local 1-forms on M. They satisfy

g(HX,Y)=—g(X,HY),
(2.16) PXB:_PEA’ PXB:_PgAa PzB:_PgAa
(217)  Ww(X) =g(Ua, X), v*(X)=9g(Va, X), w'(X)=g(Wa,X)
for tangent vectors X,Y to M. If Uy = 0,V4 =0,W4 =0,A=1,2,...,p
identically, the submanifold is called an invariant submanifold under {¢, ), 6}.
In what follows we assume that the Sasakian 3-structure vector fields £, n,C

are always tangent to M and use the same notations as appeared in the case
of ambient manifold. Then, from (2.3), (2.4) and (2.13), we have

(2.18) Fe=0, Gn=0, HC=0,

(219) Fn=¢(, F(=-n, G(=¢§ G&=-( H{=n Hn=-¢

(2.20)  uwh(§) =u(n) =u(() =0, v(&) =v () =v"(() =0,
w(€) =wr(n) =wt () =0, A=1,2,....p

Applying ¢ to both sides of (2.13)(;) and (2.14)), it follows from (2.4), (2.5),
(2.13)-(2.14) and (2. 16)—(2 17) that

(221) F’X=-X+ Z X)Us+g(&,X)E, FUy = Z P%LUs,
A=1

p
9(Ua,Ug) = dap+ Y PicPlp
c=1
because the structure vector field ¢ is tangent to M. Similarly, from (2.13) ),
(2-13)(iii)a (2-14)(ii) and (2.14)(111), we get

p
(2.22) G?’X =—-X + Z VAX)WVa+gn, X, GVa=-Y PYVs,
A=1

p
9(Va,Vg) =dap + Z P,Z(’CPé"B,
c=1

p
(2.23) H?’X =—-X + Z wA(X)Wa+g(¢,X)¢, HWa=—Y PizWs,
A=1 B=1

p
gWa, Wp) =dap + Z PhcPép.
o=1
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Applying ¢ and 6 to both sides of (2.13)), respectively, and using (2.3)-(2.5),
(2.13)-(2.14) and (2.16)-(2.17), we have

(2.24) GFX =-HX + Z u(X)Va + g€, X)n,
A=1

vAHFX) = —w(X) + i PYouf (X)

(2.25) HFX =GX + Z uN(X)Wa + g(€, X)C,
A=1

w(FX) = )+ Z P4 pu®(

Similarly, it follows from (2.13);;y and (2.13)(;) that

(2.26) HGX = —-FX + Z X)Wa+g(n, X),
A=1

w?(GX) = —u(X) + i PigoP (X

(2.27) FGX = HX + Z X)Ua + g(n, X)&,
A=1

uHGX) = wt (X) + Y PP (X),
B=1

(2.28) FHX = -GX + Z w(X)Ua + (¢, X)E,
A=1

uHHX) = —o(X) + zp: Pipuw®(X),
B=1

(2.29) GHX = FX + Z wA(X)Va + g(¢, X)n,
A=1

vAHX) = u(X) + i PY L wB (X).

Applying ¢ and 6 to both sides of (2.14), respectively, and using (2.4)-
(2.5), (2.13)-(2.14) and (2.17), we have

p p
(230)  GUA=-Wa—Y PipVe. g(UaVe)=Pis+ > PiPip,
B=1 C=1
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p P
(2.31) HUs=Va— Y PiuWs, g(Us,Wg)=—Pis+ > PicFPlp.
B=1 c=1

Similarly, it follows from (2.14) ;) and (2.14) ;) that

p p
(2.32)  HVa=-Ua—Y_ PisWs, g(Va,Ws)=Piz+ > PioPoy,
B=1 c=1

p p
(2.33)  FVa=Wa— > PiyUs g(Va,Up)=—Pig+ > Pi.Ply,
B=1 Cc=1

p p
(234) FWa=-Va— Y PiaUs, g(Wa,Up)=Ply+ > PicPip,
B=1 C=1

p p
(2.35) GWa=Ua— Y PigVe, g(Wa,Ve)=—Piy+ > PhcPip.
B=1 Cc=1

Differentiating (2.13)(;) covariantly and making use of (2.6)-(2.8), (2.13)-
(2.14) and (2.16), we obtain

p
(2.36) (VyF)X = g(X, )Y = g(X,Y){ = > g(HaX,Y)Ux
A=1

p

+ 3wt (X)HaY,

A=1
(2.37) (Vyu)X = — g(HAFX,Y) — i P%,9(HpX,Y)
+ > sap(Y)uP(X).

Similarly, from (2.13) ;) and (2.13) ), we also get

(2.38) (VyG)X = g(X,n)Y — g(X,Y)n— > g(HaX,Y)V,
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p
(2.40) (VyH)X = g(X,Q)Y = g(X,Y)¢ = Y g(HaX, Y)W,
A=1
p
+ > wh(X)HaY,
A=1
P
(2.41) (Vyw")X = — g(HAHX,Y) = Y Plgg(HpX,Y)
B=1
+) sap(V)w”(X).
B=1

Differentiating (2.14)) covariantly and taking account of (2.6)-(2.8), (2.13)-
(2.14) and (2.16), we obtain

p p
(2.42) VxUa=FHsX =Y P HpX + Y sap(X)Us,
B=1 B=1
p
(2.43) VxPip=g(Ua, HpX) —uP(HaX) =Y Ploscp(X)
c=1

p
+ Z PECSCA(X)-
C=1

Similarly, from (2.13) ;) and (2.13) ), we also get

p p
(2.44) VxVa=GHaX =Y P{HpX + > sap(X)Va,
B=1 B=1
p
(2.45) VxPip = g(Va,HpX) —v®(HaX) = > Picsop(X)
Cc=1
p
+ Z PgCSCA(X),
c=1
p p
(2.46) VxWa=HHsX =Y PigHpX + Y  sap(X)Ws,
B=1 B=1
(2.47) VxPlp=gWa, HpX) — wP(HaX) - Z Phoscn(X

p
+ Z chScA(X)-
Cc=1

Moreover, it is clear from (2.2) that

(2.48) Vx§=FX, Vxn=GX, Vx(=HX,
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(2.49) Hy8=Us, Hpan=Va, Ha(=Wiy.

3. Laplacian for a global function defined on M
We define a function f on M by

f= Au*Ua) +v*(Va) + wh(Wa)}.
A=1

Then, since &, 7, ¢ are mutually orthogonal unit vector fields, (2.21)-(2.23)
yield
(3.1) f=tr F?4+tr G +tr H* +3(n—1), (tr:= trace)

which means that f is independent of the choice of N4's and thus f is a global
function defined on M. f vanishes identically on M if and only if M is an
invariant submanifold under {¢, v, 6}.

From now on we compute the Laplacian Af. For any vector field X on M
it follows from (2.15), (2.17)-(2.18), (2.36), (2.38) and (2.40) that

1 1
3 Xf= 5X(tr F? 4 tr G? 4 tr H?)
=tr (VxF)F+tI‘ (VxG)G+tr (VxH)H

p
=2 {g(FHAX,Us) + g(GHAX,Va) + g(HHAX, Wa)},
A=1
from which together with (2.20)-(2.23), (2.42), (2.44), (2.46) and (2.49), we get

1

(32)  {(VyVxf~ Vo xf) = HVv (X))~ (V¥ X))

p

= {9(VyFYHAX,Ua) + g(F(VyHa)X,Ua) + g(FHAX,VyUa)
—1

e |

hS

g((VyG)HAX, VA) + g(G(VyHA)X, VA) + g(GHAX, VyVA)
g((VyH)HAX, WA) + g(H(VyHA)X, WA) + g(HHAX, VyWA)

+ +

I
M=

[9(Ua, X)g(Ua,Y) + g(Va, X)g(Va,Y) + g(Wa, X)g(Wa,Y)

b
Il

—9(VyHa)FUA, X) = g(Vy Ha)GVa, X) — g(Vy Ha)HWy4, X)

- g(HAFQHAXa Y) - g(HAG2HAX7 Y) - g(HAHQHAXv Y)

p
> {g(HaUp, X)g(HpUa,Y) + g(HaVi, X )g(HpVa,Y)

B=1
+ g(HaWpB, X)g(HpWa,Y) — g(HpHAX,Y)g(Up,Ux)
—g9(HpHAX,Y)g(Ve,Va) — g(HpHAX,Y )g(Wg,Wa)

— Pipg(HpFHAX,Y) — P{pg(HpGHAX,Y)

+
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— Plpg(HEHHAX,Y) 4+ sap(Y)g(FHAX,Ug)
+5aB(Y)9(GHAX,VB) + sap(Y)g(HHAX, Wp)}].

On the other hand, substituting FU4, GV and HW4 for X into (2.11), re-
spectively, we have

p
(VyHA)FUA = (Vru,Ha)Y + Y {sap(Y)HpFUa — sap(FUA)HpY'},

B=1

p
(VyHA)GVa = (Vov, Ha)Y + Y {sap(Y)HpGVa — sap(GVa)HpY},

B=1

p
(VyHA)HWa = (Viaw,Ha)Y + Y {sap(Y)HsHWa — sap(HWa)HpY'},

B=1
which together with (3.2) yield

i(VYVXf —Vvyxf)

= [9Ua, X)g(Ua,Y) + g(Va, X)g(Va,Y) + g(Wa, X)g(Wa,Y)

—9(Vru, HA)Y, X) —g(Vava Ha)Y, X) = g(Vaw, Ha)Y, X)
—g(HAF?H X,Y) — g(HAG*HpX,Y) — g(HAH*HAX,Y)
p
+ > {sap(FUA)g(HpY,X) + 545(GVa)g(HpY, X)
B=1
+ 5a(HWA)g(HY, X) + g(HaUp, X)g(HpUA,Y)
+9(HaVp, X)g(HpVa,Y) + g(HaWg, X)g(HgWa,Y)
—g(HpHAX,Y)g9(Up,Ua) — g(HpHaX,Y)g(Vp,Va)
— g(HpHAX,Y)g(Wp,Wa) = P{pg(HpFHAX,Y)
— PYog(HgGHAX,Y) — Ppg(HsHHAX,Y)}].
Hence we have
(3.3)

1 p
1A= D 19U, Ua) + g(Va, Va) + g(Wa, Wa) — tr FPH3 — tr G*H}
A=1

— tr HQHI% — VFUA(tI“ HA) —Vav, (tr HA) —Vaw, (tr HA)

P
+ Z{SAB(FUA)U“ Hp + SAB(GVA)tl“ Hp + SAB(HWA)tr Hp

B=1
+g(HaAUp, HgUA) + g(HAVE, HgVa) + g(HaWg, HgWa4)
— (tr HBHA)g(UB, UA) — (tr HBHA)g(VB, VA)
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— (tr HgHa)g(Wp, Wa) — P y(tr FHAHp)
— PY,(tr GHaAHp) — Pis(tr HHAHR)}].

On the other hand, (2.21)-(2.23) and (2.49) imply

tr F2H% = —tr HA +g(Ua,Ua) + Y  g(HaAUp, HAUR),

M- £

tr GPHS = —tr H3 + g(Va,Va) + Y g(HaVg, HAVp),

oo}
Il

1

M~

tr H2H3 = —tr H3 + g(Wa,Wa) + > g(HaWg, H\Wg),

o
E‘

from which combined with (3.3) it follows that
(3.4)

1 p
TAf = > [Btr H3 = (FUA)tr Ha — (GVa)tr Ha — (HWa)tr H
A=1

p
+ Z{SAB(FUA)‘EI‘ Hp + SAB(GVA)tr Hp + SAB(HWA)‘EI‘ Hp
B=1

+9(HaUp,HpUa — HaUp) + g(HaAVp, HgVa — HAVp)

+g(HaWg, HgWa — HaWpg) — (tr HsHa)g(Up,Ua)

— (tr HgHa)g(Vp,Va) — (tr HgHa)g(Wp, Wa)

— PYg(tr FHAHpB) — PY5(tr GHAHpg) — PSp(tr HHAHp)}].
Now we prepare some lemmas for later use.

Lemma 3.1. Let M be a submanifold of a unit (4m + 3)-sphere S*™+3 to
which the Sasakian 3-structure vector fields €, n, ¢ are always tangent. If the
normal connection of M in S*™ 13 is flat, then

YoutUa), Y0t (Va), D wt(Wa)
A=1 A=1 A=1

are constant and consequently the function f is also constant.

Proof. For any vector field X tangent to M, it follows from (2.7), (2.15), (2.21)
and (2.42) that

M=

SXOZ WA W) = 3 g(Vxla,Un)
A=1

b
Il

1

{9(FHAX,Ua) = Y Pipg(X,HpUa)]
B=1

M=

hS
,U.
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p
= Y Piy9(X,HaUp — HgUx).
A,B=1

On the other hand, if the normal connection is flat, then by means of (2.49)
we obtain
HaUp — HpUp = (HaHp — HpHa)§ = 0,
(3.5) HaVp — HpVa = (HaHp — HpHa)n =0,
HaWp — HgWy = (HaHp — HgH7)¢ =0,

which together with the above equation yield X (35 _, u?(Ua)) = 0, namely

P_,u?(Ua) is constant. Similarly we can prove that Y 5_, v4(Va) and

P _ L w?(Wy4) are also constant. O

Lemma 3.2. Let M be as in Lemma 3.1. If the normal connection of M in
S4m+3 s flat and the mean curvature vector field p is parallel with respect to
the normal connection, then

p p

(3.6) 3> tr Hy= Y {(tr HxHp)g(Ua,Up) + (tr HaHp)g(Va,Vp)
A=1 A,B=1

+ (tI‘ HAHB)g(WA, WB)}
Proof. Owing to Lemma 3.1, it follows from (2.10), (3.4) and (3.5) that

3 i tr H3 = i {(tr HpHA)g9(Up,Ua) + (tr HpHa)g(VB,Va)
A=1 A,B=1
+ (tr HgHa)g(Wp, Wa) + P%y(tr FHAHp)
+ PYL(tr GHAHp) + P4 p(tr HHAHg)},
from which combined with (2.16) and HyHp = HpH 4, we get (3.6). O

4. Submanifolds with dim(TM N ¢TM+ NyYTM+NOTM*) < p
Suppose that at a point x € M
dim(T, M N ¢T, M+ N YT, M+ NOT, M*) = q.

Then we can choose in TM~ 3¢ orthonormal normal vector fields N, (o =
1,...,3q) in such a way that

¢I(N0t)l) wm (Noz)ma ew (Noz)m S TIM ©® Span{Na}azl,...,&p

and further
(4.1)
¢I(N1)I = l/Jm(Nq—i-l)z = ew(NQq—i-l)wa sy ¢$(Nq)$ = l/Jm(NQq)z = 91(N3q)z
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In fact, if {(X1)z,...,(Xy)z} is an orthonormal basis of T, M N ¢T, ML N
YT, M+ NOT, M=, then there exist 3¢ normal vector fields N, such that

(Xl)m = 7¢m(N1)z = 71/)I(Nq+1)1 = *QI(NQQJrl)Ia ceey
(Xq)w = _¢I(Nq)m = _Q/Jw(NQq)w = _GI(N?N])I

and consequently all of (X;), are mutually orthogonal to &, n and ¢ because of
(2.3). With such a choice of Ny(a=1,...,3q), it follows from (2.14) that

(4.32)  (X1)e = (U1)z = (Vgg1)z = Wagt1)a,

(4.2)

Xq)m = (Uq)r = (V2q)x = (WBq)zv

(
(Uqul)m == (USq)z =0,
(Vl)w == (Vq)z = (V2q+1)z == (V3q)z =0,
(Wl)m — = (WQq)m = 0;
[ _ [ _ [ _ [ _
(4.3b) P(q+1)(2lJ+1) - 7P(2q+1)(q+1) =1... P(2q)(3lJ) - 7P(3‘Z)(2‘D =1,
3 _ P _ 3 _ P _
Piyeerny = ~Pepnw =1 Pgey = FPege =~
0 _ p _ 0 _ 3 _
Piygrn = P =L Poeg = Lage =1
P? =0, PY =0, P =0, (a=1,...,3¢, v=3¢+1,...,p),
p
(4.3¢)  ¢a(Nv)o = —(Ub)a + Z Pf&(m(NS)xv
6=3q+1
p
6=3q+1
p
05 (Nv)z = —(Wo)a + Z Pf&(x)(Nt?)wa
d=3q+1

where we have used (2.4) and (4.2). Furthermore, it is clear from (2.4), (4.1)
and (4.2) that

(44) g2((Xi)a, (Up)2) =0, g2((Xi)z, (Vi)2) =0, g2((Xi)a, (Wi)a) = 0,
1=1,...,q, v=3q+1,...,p.

Lemma 4.1. If the normal connection is flat, q is constant over M.

Proof. We put

P p P
fi= Z UA(UA), fo= Z UA(VA>a fz= Z wA(WA)'
A=1 A=1 A=1

Assume that at y € M
dim(T, M N ¢T, M+ NYT,M>NOT,M*) = ¢
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and let say ¢ < ¢’. At x and y the function f; can be rewritten as the following:

3q 3¢’ p
45) i) =) uUa)@) + > w(U)@)+ > w(U) (),
a=1 v=3g+1 v=3q¢'+1
3q D
) =Y wU)w) + Y, w(U)(y).
a=1 v=3q'+1

By means of Lemma 3.1, the function f; is constant and consequently (4.3)
and (4.5) imply

3q’ P p
3¢+ Y U@+ Y W@ =3+ Y ' (U)W)
v=3q+1 v=3q'+1 v=3q'+1
or equivalently,
3q’ P
(46) 3(a—d)+ Y w(U)@)+ > {u"(U)(z) —u(U,)(y)} = 0.
v=3q+1 v=3q'+1

On the other hand, it follows from (2.21) that u”(U,) = 1 — S A_,(P%,)?
and thus

3q 3¢ P
Yoot Ua)@) =3 —a) - Y. D> (P ),
v=3q+1 v=3q+1 A=1

from which, inserting back into (4.6), we have

@47 - zq: zp:(PfA)Q(w)Jr zp: {u"(U)(2) =" (Uy)(y)} = 0.

v=3q+1 A=1 v=3q'+1
Since v’ (U,) and Pf ', are differentiable functions, we obtain
lim {w" (U, )(x) — u"(U,)(y)} = 0.
Ty

Hence it is clear from (4.7) that

p

ST(PL)y) =0, be., PA(y) =0, v=q+1,....q,
A=1

which is a contradiction because of (4.3b). By using the functions f3 or f3 we

can derive the same conclusion. O

In the following we assume that 3¢ < p and that the mean curvature vector
field u is parallel with respect to the normal connection. Then (2.21)-(2.23),
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(3.6), (4.3) and (4.4) yield

P

Z (tI‘ HE)[{l - g(UVa UU)} + {1 - g(vw Vu)} + {1 - g(WUa WV)}]
v=3q+1
= zp: (tr H) zp:{ +(PUy)? + (PLy)*} =0,
v=3q+1 A=1

which implies tr H2 =0 for v = 3q+1,...,p. Thus H, =0,v =3¢+ 1,...,p
and U, =V, =W, =0,v =3¢+ 1,...,p by means of (2.49). Particularly,
when ¢ = 0, we have the following.

Theorem 4.2. Let M be an (n—+3)-dimensional complete submanifold isomet-
rically immersed in a unit (4m + 3)-sphere S*™+3to which the structure vector
fields €,m,C are always tangent. Suppose that the normal connection of M in
S4m+3 s flat and that the mean curvature vector field is parallel with respect
to the normal connection. If dim (T, M N T, M+ N YT, M+ NOT, M) =0 at
some point x € M, then M is a totally geodesic, invariant submanifold and
consequently a great sphere.

Corollary 4.3. Let M be an (n+ 3)-dimensional complete, minimal submani-
fold isometrically immersed in a unit (4m+ 3)-sphere SY™+3to which the struc-
ture vector fields £, 1, are always tangent. Suppose that the normal connection
of M in S*™+3 is flat and that the mean curvature vector field is parallel with re-
spect to the normal connection. If diim(T,MN¢T,M*-NYT,M+NOT,M*) =0
at some point x € M, then M is a totally geodesic, invariant submanifold and
consequently a great sphere.

On the other side, in order to consider the case where 0 < 3¢ < p, we will
prepare the following two Lemmas.

Lemma 4.4. Fora=1,...,3gandv=3q+1,...,p, Spo =0.
Proof. Since U, =V, =W, =0 and H, =0, (2.42), (2.44) and (2.46) give

P

> supUs =Y PlyHpX, i suVe =Y PigHpX,

B=1 B=1
P
> susWp =Y PlyHpX,
B=1

from which together with P¢, = P¥, = P?, = 0, it follows that

q 2q 3q
§ SuaUa = Oa § SuaVa = Oa § Sl/aWa = 0.
a=1 a=q+1 a=2q+1

Hence it is clear from (4.3) that s, =0fora=1,...,3¢;v =3q+1,...,p. O
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Lemma 4.5. The first normal space of M in S*™+3 is invariant under parallel
translation with respect to the normal connection.

Proof. Since X; # 0t = 1,...,¢9),U, =V, =W, =0 and H, = 0(v =
3¢+ 1,...,p), we can see that (2.49) and (4.3) imply that the first normal
space is spanned by N, (« =1,...,3q). For any vector field X tangent to M,
by means of Lemma 4.4 we have

D 3q
VJ)}NQ = Z SaA(X)NA = Zsaﬂ(X)Nﬂ,
A=1 B=1

which show that the first normal space is invariant under parallel translation
with respect to the normal connection. (I

Combining Lemma 4.4 with the results due to Allendoerfer [1] and Erbacher
[4] yields that there exists a totally geodesic submanifold M’ of S4™+3 of di-
mension (n + 3 + 3¢) such that M C M’. By means of (4.2) and (4.3) with
U, =V, =W, =0 =3¢+1,...,p), we can easily see that M’ is an invariant
submanifold of $*™*3 and consequently a (4m’ + 3)-dimensional sphere for an
integer m/’.

Summing up, we may conclude:

Theorem 4.6. Let M be an (n + 3)-dimensional submanifold isometrically
immersed in a unit (4m + 3)-sphere S*™3to which the structure vector fields
&1, ¢ are always tangent. Suppose that the normal connection of M in S4™+3
is flat and that the mean curvature vector field is parallel with respect to the
normal connection. If dim(T, M N¢T, M+NyT,M+NOT,M~*) = q(3q < p) at
some point x € M, then either M is a totally geodesic, invariant submanifold
of S4™m+3 | or there exists a totally geodesic, invariant submanifold S"+3+34 of
SAm+3 sych that M C S"T3+34,

5. Submanifolds with L-flat normal connection

In this section we try to apply the results which are obtained in the previous
sections to submanifolds of a quaternionic projective space.

Let QP™ be a real 4m-dimensional quaternionic projective space with quater-
nionic Kéhlerian structure {J, K, L} and let g be the Fubini-Study metric which
satisfies the Hermitian conditions

(5.1) g(JX,JY)=g(X,Y), §(KX,KY) =g(X,Y), g(LX,LY) = §(X,Y).
Then we have

JP=—-1, K?=-I, L*=-I,

5.2
(52) J=KL=—-LK, K=LJ=-JL, L=JK=-KJ
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and

Vil = r(X)K - q(X)L,
(5.3) ViK = —r(X)J +p(X)L,
Vil= q¢X)J-pX)K

for any vector field X in QP™, where V denotes the Riemannian connection
with respect to g, and p,q and r are certain local 1-forms (cf. [5]). It is
well known (cf. [6, 15]) that the quaternionic Ké&hlerian structure {J, K, L} is
induced from the Sasakian 3-structure {¢, 1, 0} of a unit (4m+3)-sphere S4m+3
by the Hopf fibration 7 : S4™*3 — QP™. Relations between these structures
are given by
p=J, Yv=K" 6=L"
9(X,Y) = g (X, Y) + fe(X) fe (V) + fo(X) [ (Y) + fo(X) fe(V),
where * denotes the horizontal lift of indicated quantities. We notice that
the structure vector fields £, 7 and ¢ are the unit vertical vector fields for the
fibration.

Let M be an n-dimensional real submanifold of QP™ and construct a S3-
bundle #=1(M) over M in such a way that the following diagram is commuta-
tive :

(5.4)

ﬁfl(M) v S4m+3

M —— QP™
where 7 : 771(M) — S*™*3 and v : M — QP™ are isometric immersions. Then
71(M) is an (n+ 3)-dimensional submanifold of S4™*3 to which the structure

vector fields £, and (¢ are tangent. Given an orthonormal basis Ny,..., N,
in TM+, horizontal lifts N7, ... , IV, are mutually orthonormal normal vector

fields to #71(M) with respect to the Riemannian metric g of #=!(M) which
is induced from that of S4™*3. The transforms for X € TM and for N4 by
{J, K, L} are, respectively, written by

p p
(55)  JX=FX+> uX)Na, KX =GX+) 2*(X)Ny,
A=1 A=1

p
LX =HX + Y w*(X)Na,
A=1

P p
(56)  JNa=-Ua+ Y PigNp, KNi=-Va+ > PN,

B=1 B=1

P
LNy =-Wa+ Y PipNg,
B=1
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where {F, G, H} and { P/, PX PL} define endomorphisms of TM and of TM*,

respectively, and {UA, Va, WA} and {u?, 04,

wA} are local tangent vector fields

and local 1-forms on M. Denoting by ¢ the Riemannian metric induced on M

from that of QP™, we have

(5.7)  FX,Y)=—y(X,FY),

g(HX,Y) = —g(X, HY),
(5'8) PXB = 7PBA) Pfl(B =
(5.9)  WMX)=y(Ua, X),

J(GX,Y) =

7P§Aa
VA(X) = §(Va, X),

—y(X,GY),

7P§A7
A (X) = §(Wa, X)

Lo_
Pip =

for vector fields X, Y tangent to M. Applying J, K and L to (5.5) and making
use of (5.2), we can easily obtain the following relations (5.10) and (5.11):

(5.10) F?X = —X + Z 0
A=1

HQX_—X—i—Zw
A=1

(5.11) GHX = FX—i—Zw
A=1

HFX = GX++ZU
A=1

FGX = HX+Z
A=1

X)W,, FHX =-GX + Zw

X)Ua, GX——X+Z X)Va,
A=1

WA;

X)Wy, HGX =-FX+ Z P (X)W,

A=1

UA;
A=1

X)Ua, GFXffHXJrZu X)Va.

A=1

Next, applying J, K and L to (5.6) and taking account of (5.2), we have the

following relations (5.12)-(5.15):

p p p
(5.12) FUa=—Y_ PipUp, GVa=—Y_ PipVe, HWa=—>_ PizWs,

B=1

p
(5.13) GUa=-Wa— Y PizVs,
B=1
p
HVy=-Us— Y PipWs,
B=1
p
FWa=-Va— Y PipUs,
B=1

B=1 B=1

p
HUA=Va— S Plaie,
B=1
p
PV =W Y P,
B=1
p
CWa =04~ 3 Py,
B=1

p p
(5.14) §(Ua,Up) =68+ > PioPlp, §(Va,Vs) =dap+ Y PhoPLs,

C=1

Cc=1
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p
g(Wa,Wg) =0ap+ Y PicPbs,
c=1

P P

(5.15) §(Ua, Vi) = Pip + Z PloPEs, 9(Va,Wp) = Pig+ Z PicPhp,
Cc=1 Cc=1

\ \ P
9(Wa,Up) = Pip + ) PhcPlp.
Cc=1
Let V and V* denote the Riemannian connection induced in M and the

normal connection of M in QP™, respectively. Denoting by Hy and $4p

the Weingarten maps with respect to N4 and the connection forms of \VL,

respectively, we have Gauss and Weingarten formulas for V, V and V+ which

are similar to (2.7). Differentiating (5.5) covariantly and using (5.3), we can

easily obtain
(5.16)

p
(VyF)X =r(Y)GX — q(Y)HX = Y g(HaX,Y)Us + Z WA (X)H Y,
A=1 A=1

p p
(VyG)X = —r(V)FX +p(Y)HX = > g(HAX,Y)V, Z Y (X)H Y,
A=1 =1

p
(VyH)X = q(Y)FX — p(Y)GX — Z JHAX,Y)Wa + Z W (X)H Y.
A=1

Differentiating (5.6) covariantly and using (5.3), we have the following relations
(5.17) and (5.18):

(5.17)

p p
VxUa=r(X)Va - q(X)Wa+FHsX = Y PigHpX + Y $4p(X)Us,
B=1 B=1

p p
VxVa = —r(X)Ua +p(X)Wa + GHaX = > PigHpX + Y 54p(X)Vs,
B=1 B=1

p p
VxWa =q(X)Ua = p(X)Va+ HHs\X = Y PipHpX + ) 345(X)Ws,
B=1 B=1
(5.18)

p
VxPip = VxPis+ Z Plpica(X)+ Y. Plodcn(X)
= r(X)Psp — Q(X)PAB +9(Ua, HpX) — 4P (HAX),

p p
VxPAp = VxPip+ Y Plpsca(X)+ ) Picsen(X)
Cc=1 Cc=1
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= —r(X)Pip + p(X)Pip + §(Va, HpX) — v (HaX),

P P
Vé}PfI{B = prjB + Z PCI«‘BECA(X) + Z P,{szCB(X)
Cc=1 C=1
= q(X)Pip — p(X)Pip + §(Wa, HpX ) — 0" (HaX).

On the other hand, QP™ is of constant Q-sectional curvature 4 and so the
curvature tensor R of QP™ has the following form (cf. [5]):

RX,Y)Z = §(V,2)X — §(X,2)Y
+§(JY,2)JX — §(JX,2)JY —2§(JX,Y)JZ
GKY,Z)KX — §(KX,Z)KY —25(KX,Y)KZ
+§(LY,Z)LX — §(LX,Z)LY —2§(LX,Y)LZ.
Thus, using (5.5) and (5.6), we have the following Codazzi and Ricci equations
(5.19) and (5.20), respectively:

(5.19) (VxHA)Y — (VyHa)X
= > {3a(X)HpY — 34p(Y)HpX}

—y(UA,Y)FX + §(Ua, X)FY = 25(FX,Y)U4
— §(Va, Y)GX + §(Va, X)GY — 25(GX,Y)Va
— §(Wa, Y)HX + g(Wa, X)HY — 25(HX,Y)Wa,
(5.20) RY(X,Y)Na4
P
= > {9((HaHp — HHA)X,Y)
B=1
+9(U4,Y)3(Us, X) = §(Ua, X)3(Up,Y) = 25(FX,Y)Pip
+9(Va, Y)g(V, X) = 9(Va, X)3(Vis,Y) = 29(GX,Y) PAp
+g(WA)Y)g(WBaX) _Q(WA,X)Q(WB,Y) - 2Q(HX’Y)P£B}N35
where R1 denotes the curvature tensor of the normal connection V-+. Here
we notice that if M is an invariant submanifold of QP™, then M is totally
geodesic (cf. [6]) and Uy =Va=Wa=0(A=1,...,p).
If R+ satisfies
(5.21)  RM(X,Y)Na

p
Z J(EFX,Y)P]s —20(GX,Y)PX, —20(HX,Y)PigINp
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and

VxPip = r(X)Pip — a(X)Pig,
(5.22) VxPi = —r(X)Pip +p(X)Php,

\V)L(PjB = Q(X)PA]B —P(X)Pfx(Ba
then the normal connection of M is said to be lift-flat or briefly L-flat. It is well
known ([17, Theorem 3.5, p. 431]) that the normal connection of M is L-flat
if and only if the normal connection of 7=%(M) is flat. In [17], when (5.22) is
satisfied, the structure induced in the normal bundle of M in QP™ is said to
be parallel.

Let Hy, p and j1 be the Weingarten map with respect to N}, the mean

curvature vector field of 771(M) and of M, respectively. Then the following
relations are known (cf. [16]):

(5.23) HaX" = (HaX)" + (U, X)"€ + §(Va, X) "0+ §(Wa, X)*¢,

(5.24) tr Ha = (tr Ha)*, (A=1,...,p)
n N
5.25 Vi = ——(Vii)*
(5.25) % n+3( X"
(5-26) PA]B* = SAB(f)a Pfx(B* = SAB(n)a PjB* = SAB(C)-

It is clear from (5.23) that M is minimal if and only if 771(M) is minimal (cf.
[16]). Finally we verify

Theorem 5.1. Let M be an n-dimensional real minimal submanifold of QP™.
If the normal connection of M in QP™ is L-flat and at some point of x € M,
dim(T, M N JT,M*+ N KT,M+ N LT,M*) = ¢3¢ < p := 4m — n), then
either M is a totally geodesic, invariant submanifold of QP™ or there exist a
real (n -+ 3q)-dimensional totally geodesic, invariant submanifold QP 30/ of
QP™ such that M C QP t30)/4,

Proof. Since diim(T, MNJT,M*+*NKT,M*+NLT,M*) = q and the Riemannian
metric g satisfies the Hermitian conditions, there exist mutually orthonormal
normal vectors nq,...,ns3, such that

Jznl = Kznq_ﬂ = LGgq_ﬂ, ceey Jmnq = Kmngq = LG3q
constitute an orthonormal basis for T,M N JT, M+ N KT, M+ N LT, M'. We
extend ny, ..., n3q to local fields Ny, ..., N34 in T M+ and choose Nzgt1,.-., Np

in TM* so that Ny,..., N3g, N3gy1,..., N, are mutually orthonormal. Then
Ny, ..oy N3y N3y, -, N,y are orthonormal vector fields in T~ Y(M)*. Let
y € 7 1(x), then

dim(T, 71 (M) N ¢y Ty 7~ (M) Ny Ty~ (M) N0, Ty (M)*") = ¢q

because of (5.4). Furthermore, 7#~!(M) is minimal in S*™%3 because of (5.24)
and the normal connection of #~!(M) is flat. Thus, by means of Theo-
rem 4.6, 7~ 1(M) is a totally geodesic invariant submanifold S"*+3 of S4m+3,
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or there exists a totally geodesic invariant submanifold S"*3+39 such that

7 Y (M) c §nt3t3a. §gnt3+34 g 5 S3-bundle over a quaternionic projective

space QP 139/4 of a real (n + 3¢)-dimension and {£,7,¢} are the unit verti-
cal vector fields of the S3-bundle. Thus the immersion : QP(**+39/4 _ Qp™
is compatible with the Hopf fibration 7 : §4™*+3 — QP™. Since S"3+3¢ is
a totally geodesic submanifold in S*"*3, (5.23) implies that QP +39/4 is a
totally geodesic, invariant submanifold of Q P™. This completes the proof. [

References

[1] C. B. Allendoerfer, Rigidity for spaces of class greater than one, Amer. J. Math. Soc.
61 (1939), 633-644.

[2] T. E. Cecil, Geometric applications of critical point theory to submanifolds of complex
projective space, Nagoya Math J. 55 (1974), 5-31.

[3] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker Inc., New York, 1973.

[4] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential
Geometry 5 (1971), 333-340.

[5] S. Ishihara, Quaternion Kaehlerian manifolds, J. Differential Geometry 9 (1974), 483—
500.

[6] S. Ishihara and M. Konish, Differential Geometry of Fibred Spaces, Study Group of
Differential Geometry, Tokyo, 1973.

[7] T. Kashiwada, A note on a Riemannian space with Sasakian 3-structure, Natur. Sci.
Rep. Ochanomizu Univ. 22 (1971), 1-2.

[8] S. Kawamoto, Codimension reduction for real submanifolds of a complex hyperbolic
space, Rev. Mat. Univ. Complut. Madrid 7 (1994), no. 1, 119-128.

[9] H. S. Kim and J. S. Pak, Codimension reduction for real submanifolds of quaternionic
hyperbolic space, Acta Math. Hungar. 121 (2008), no. 1-2, 21-33.

[10] Y. Y. Kuo, On almost contact 3-structure, Tohoku Math. J. 22 (1970), 325-332.

[11] J.-H. Kwon and J. S. Pak Codimension reduction for real submanifolds of quaternionic
projective space, J. Korean Math. Soc. 36 (1999), no. 1, 109-123.

[12] H. B. Lawson, Jr., Rigidity theorems in rank-1 symmetric spaces, J. Differential Geom-
etry 4 (1970), 349-357.

[13] M. Okumura, Reducing the codimension of a submanifold of a complex projective space,
Geom. Dedicata 13 (1982), no. 3, 277-289.

, Codimension reduction problem for real submanifold of complex projective
space, Differential geometry and its applications (Eger, 1989), 573-585, Colloq. Math.
Soc. Janos Bolyai, 56, North-Holland, Amsterdam, 1992.

[15] J. S. Pak, Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q-
sectional curvature, Kodai Math. Sem. Rep. 29 (1977), no. 1-2, 22-61.

[16] Y. Shibuya, Real submanifolds in a quaternionic projective space, Kodai Math. J. 1
(1978), no. 3, 421-439.

[17] S. Tachibana and W. N. Yu, On a Riemannian space admitting more than one Sasakian
structures, Tohoku Math. J. 22 (1970), 536-540.

(14]

HyaNG Sook Kim

DEPARTMENT OF APPLIED MATHEMATICS
INSTITUTE OF BASIC SCIENCE

INJE UNIVERSITY

KIMHAE 621-749, KOREA

E-mail address: mathkim@inje.ac.kr



CODIMENSION REDUCTION FOR SUBMANIFOLDS 1397

JIN SUK PAK

KYUNGPOOK NATIONAL UNIVERSITY
DAEGU 702-701, KOREA

E-mail address: jspak@knu.ac.kr



