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CODIMENSION REDUCTION FOR SUBMANIFOLDS OF

UNIT (4m+ 3)-SPHERE AND ITS APPLICATIONS

Hyang Sook Kim and Jin Suk Pak

Abstract. In this paper we establish codimension reduction theorem for
submanifolds of a (4m+3)-dimensional unit sphere S4m+3 with Sasakian
3-structure and apply it to submanifolds of a quaternionic projective
space.

1. Introduction

As is well-known, for a submanifold M of a Riemannian manifold M̃ , the
codimension of M is said to be reduced if there exists a totally geodesic sub-

manifold M of M̃ such that M ⊂M .
In particular, when the ambient manifold is a complex manifold, the inter-

mediate submanifold M is requested to be not only totally geodesic, but also
complex submanifold.

The codimension reduction problem was investigated by Allendoerfer [1] in

the case that the ambient manifold M̃ is a Euclidean space and by Erbacher

[14] in the case that M̃ is a real space form. For submanifolds of a complex
projective space, Cecil [2] proved a codimension reduction theorem for complex
submanifolds. Okumura [14] extended Cecil’s result to real submanifolds by
using the standard submersion method established by Lawson [12] (for real
submanifolds of a complex hyperbolic space, see [8]).

As a quaternionic analogue for real submanifolds of a quaternionic projective
space, Kwon and the second author [11] provided a codimension reduction the-
orem which may correspond to Okumura’s result in [14] (for real submanifolds
of a quaternionic hyperbolic space, see [9]).

On the other hand, in 1982, Okumura [13] studied submanifolds M of an
odd-dimensional sphere with the canonical Sasakian structure {φ, ξ} to which
the structure vector field ξ is always tangent and proved that, under some
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additional conditions, if dim(TxM∩φTxM
⊥) is less than that codimension, then

there exists such a totally geodesic φ-invariant submanifold M that M ⊂ M ,
where TxM and TxM

⊥ denote the tangent space and the normal space toM at
x ∈M , respectively. Using this theorem, in his paper [13], Okumura presented
a codimension reduction theorem for real submanifolds of a complex projective
space by means of the standard submersion method due to Lawson [12].

In this paper we first consider a (4m+ 3)-dimensional unit sphere with the
canonical Sasakian 3-structure {φ, ψ, θ} (for definition, see [7, 10, 17]). Let M
be a real submanifold of the space to which the structure vector fields ξ, η, ζ
are always tangent. If at each point x ∈M the tangent space TxM satisfies

φTxM ⊂ TxM, ψTxM ⊂ TxM, θTxM ⊂ TxM,

M is called an invariant submanifold under {φ, ψ, θ}. It is well known that
an invariant submanifold is a manifold with Sasakian 3-structure. We consider
the more general case that at each point x ∈ M TxM and TxM

⊥ satisfy the
condition that dim(TxM ∩ φTxM

⊥ ∩ ψTxM
⊥ ∩ θTxM

⊥) is independent of x.
Such submanifolds involve invariant submanifolds as a special case.

The main purpose of the paper is to study relations between dim(TxM ∩
φTxM

⊥ ∩ ψTxM
⊥ ∩ θTxM

⊥) and the codimension of M , and to prove that,
under some additional conditions, if dim(TxM ∩ φTxM

⊥ ∩ ψTxM
⊥ ∩ θTxM

⊥)
is less than the codimension, then there exists a totally geodesic invariant sub-
manifold M ′ such that M ⊂ M ′, which will be used in codimension reducing
for submanifolds of a quaternionic projective space by using the standard sub-
mersion method established by Lawson [12].

All manifolds, submanifolds and geometric objects will be assumed to be
connected, differentiable and of class C∞, and all maps also be of class C∞ if
not stated otherwise.

2. Submanifolds of a (4m+ 3)-dimensional unit sphere

Let us consider a (4m+ 3)-dimensional unit sphere S4m+3 as a real hyper-
surface of the real 4(m+1)-dimensional quaternionic number space Qm+1. For
any point x in S4m+3, we set

ξ = E1x, η = E2x, ζ = E3x,

where {E1, E2, E3} denotes the canonical quaternionic Kähler structure of
Qm+1. Then {ξ, η, ζ} becomes a Sasakian 3-structure, namely, ξ, η and ζ

are mutually orthogonal unit Killing vector fields which satisfy

(2.1)

∇̄Y ∇̄Xξ = g(X, ξ)Y − g(Y,X)ξ,

∇̄Y ∇̄Xη = g(X, η)Y − g(Y,X)η,

∇̄Y ∇̄Xζ = g(X, ζ)Y − g(Y,X)ζ

for any vector fields X,Y tangent to S4m+3, where g denotes the canonical
metric on S4m+3 induced from that of Qm+1 and ∇̄ the Riemannian connection
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with respect to g. In this case, putting

(2.2) φX = ∇̄Xξ, ψX = ∇̄Xη, θX = ∇̄Xζ,

it follows that

(2.3)

φξ = 0, ψη = 0, θζ = 0,

ψζ = −θη = ξ, θξ = −φζ = η, φη = −ψξ = ζ,

[η, ζ] = −2ξ, [ζ, ξ] = −2η, [ξ, η] = −2ζ,

(2.4)

φ2 = −I + fξ ⊗ ξ, ψ2 = −I + fη ⊗ η, θ2 = −I + fζ ⊗ ζ,

ψθ = φ+ fζ ⊗ η, θφ = ψ + fξ ⊗ ζ, φψ = θ + fη ⊗ ξ,

θψ = −φ+ fη ⊗ ζ, φθ = −ψ + fζ ⊗ ξ, ψφ = −θ + fξ ⊗ η,

where I denotes the identity transformation and

(2.5) fξ(X) = g(ξ,X), fη(X) = g(η,X), fζ(X) = g(ζ,X).

Moreover, from (2.1) and (2.2), we have

(∇̄Y φ)X = g(X, ξ)Y − g(Y,X)ξ, (∇̄Y ψ)X = g(X, η)Y − g(Y,X)η,(2.6)

(∇̄Y θ)X = g(X, ζ)Y − g(Y,X)ζ

for any vector fields X,Y tangent to S4m+3 (cf. [7, 10, 15, 17]).
Let M be an (n + 3)-dimensional submanifold isometrically immersed in

S4m+3 and denote by TM and TM⊥ the tangent and normal bundle of M ,
respectively. We shall delete the isometric immersion ι̃ : M → S4m+3 and its
differential ι∗ in our notations. Let ∇ and ∇⊥ denote the covariant differenti-
ation in M and the normal connection of M in S4m+3, respectively. To each
Nx ∈ TxM

⊥, we extend Nx to a normal vector field N defined in a neigh-
borhood of x. Given an orthonormal basis {(N1)x, . . . , (Np)x} of TxM

⊥, we
denote by HA the Weingarten map with respect to NA, which will be called
the second fundamental tensor associated to NA. If the second fundamental
tensors HA (A = 1, . . . , p) vanish identically on M , M is called a totally geo-

desic submanifold. The first normal space N1
x is defined to be the orthogonal

complement of {Nx ∈ TxM
⊥ | HN = 0} in TxM

⊥ (cf. [4]). If N1, . . . , Np are
orthonormal normal vector fields in a neighborhood of x ∈M , they determine
normal connection forms sAB in a neighborhood of x by

∇⊥

XNA =

p∑

B=1

sAB(X)NB

for X tangent to M . Then we have the following Gauss and Weingarten for-
mulas:

∇̄XY = ∇XY +

p∑

A=1

g(HAX,Y )NA, g(HAX,Y ) = g(X,HAY ),(2.7)
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∇̄XNA = −HAX +

p∑

B=1

sAB(X)NB, sAB(X) = −sBA(X).(2.8)

The mean curvature vector field µ of M is defined by

(2.9) µ =
1

n+ 3

p∑

A=1

(traceHA)NA.

The submanifold M is said to be minimal if µ vanishes identically on M .
Differentiating (2.9) covariantly, we have

(n+ 3)∇⊥

Xµ =

p∑

A=1

{(XtraceHA)NA +

p∑

B=1

(traceHA)sAB(X)NB}.

Hence the mean curvature vector field is parallel with respect to the normal
connection ∇⊥ if and only if

(2.10) X(traceHA) =

p∑

B=1

(traceHB)sAB(X).

Let us denote by R and RN the curvature tensors for∇ and∇⊥, respectively.
Since the curvature tensor R̄ for ∇̄ on S4m+3 is given by

R̄(X,Y )Z = g(Y, Z)X − g(X,Z)Y,

we have the following relations:

(∇XHA)Y − (∇YHA)X =

p∑

B=1

{sAB(X)HBY − sAB(Y )HBX},(2.11)

RN (X,Y )NA =

p∑

B=1

g((HAHB −HBHA)X,Y ).(2.12)

If RN vanishes identically on M , the normal connection of M in S4m+3 is said
to be flat. The normal connection of M is flat if and only if HAHB = HBHA

for all A,B = 1, 2, . . . , p (cf. [3]).
For any X ∈ TM and for NA, A + 1, 2, . . . , p, the transforms φX,ψX, θX

and φNA, ψNA, θNA are, respectively, written in the following forms:

(i) φX = FX +

p∑

A=1

uA(X)NA, (ii) ψX = GX +

p∑

A=1

vA(X)NA,(2.13)

(iii) θX = HX +

p∑

A=1

wA(X)NA,

(i) φNA = −UA +

p∑

B=1

P
φ
ABNB, (ii) ψNA = −VA +

p∑

B=1

P
ψ
ABNB,(2.14)
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(iii) θNA = −WA +

p∑

A=1

P θABNB,

where {F,G,H} and {Pφ, Pψ, P θ} define endomorphisms of TM and TM⊥,
respectively, and {UA, VA,WA} and {uA, vA, wA} are local tangent vector fields
and local 1-forms on M . They satisfy

g(FX, Y ) = −g(X,FY ), g(GX, Y ) = −g(X,GY ),(2.15)

g(HX,Y ) = −g(X,HY ),

P
φ
AB = −PφBA, P

ψ
AB = −PψBA, P θAB = −P θBA,(2.16)

uA(X) = g(UA, X), vA(X) = g(VA, X), wA(X) = g(WA, X)(2.17)

for tangent vectors X,Y to M . If UA = 0, VA = 0,WA = 0, A = 1, 2, . . . , p
identically, the submanifold is called an invariant submanifold under {φ, ψ, θ}.

In what follows we assume that the Sasakian 3-structure vector fields ξ, η, ζ

are always tangent to M and use the same notations as appeared in the case
of ambient manifold. Then, from (2.3), (2.4) and (2.13), we have

Fξ = 0, Gη = 0, Hζ = 0,(2.18)

Fη = ζ, Fζ = −η, Gζ = ξ, Gξ = −ζ, Hξ = η, Hη = −ξ,(2.19)

uA(ξ) = uA(η) = uA(ζ) = 0, vA(ξ) = vA(η) = vA(ζ) = 0,(2.20)

wA(ξ) = wA(η) = wA(ζ) = 0, A = 1, 2, . . . , p.

Applying φ to both sides of (2.13)(i) and (2.14)(i), it follows from (2.4), (2.5),
(2.13)-(2.14) and (2.16)-(2.17) that

F 2X = −X +

p∑

A=1

uA(X)UA + g(ξ,X)ξ, FUA = −

p∑

B=1

P
φ
ABUB,(2.21)

g(UA, UB) = δAB +

p∑

C=1

P
φ
ACP

φ
CB

because the structure vector field ξ is tangent to M . Similarly, from (2.13)(ii),
(2.13)(iii), (2.14)(ii) and (2.14)(iii), we get

G2X = −X +

p∑

A=1

vA(X)VA + g(η,X)η, GVA = −

p∑

B=1

P
ψ
ABVB ,(2.22)

g(VA, VB) = δAB +

p∑

C=1

P
ψ
ACP

ψ
CB,

H2X = −X +

p∑

A=1

wA(X)WA + g(ζ,X)ζ, HWA = −

p∑

B=1

P θABWB ,(2.23)

g(WA,WB) = δAB +

p∑

C=1

P θACP
θ
CB.
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Applying ψ and θ to both sides of (2.13)(i), respectively, and using (2.3)-(2.5),
(2.13)-(2.14) and (2.16)-(2.17), we have

GFX = −HX +

p∑

A=1

uA(X)VA + g(ξ,X)η,(2.24)

vA(FX) = −wA(X) +

p∑

B=1

P
ψ
ABu

B(X),

HFX = GX +

p∑

A=1

uA(X)WA + g(ξ,X)ζ,(2.25)

wA(FX) = vA(X) +

p∑

B=1

P θABu
B(X).

Similarly, it follows from (2.13)(ii) and (2.13)(iii) that

HGX = −FX +

p∑

A=1

vA(X)WA + g(η,X)ζ,(2.26)

wA(GX) = −uA(X) +

p∑

B=1

P θABv
B(X),

FGX = HX +

p∑

A=1

vA(X)UA + g(η,X)ξ,(2.27)

uA(GX) = wA(X) +

p∑

B=1

P
φ
ABv

B(X),

FHX = −GX +

p∑

A=1

wA(X)UA + g(ζ,X)ξ,(2.28)

uA(HX) = −vA(X) +

p∑

B=1

P
φ
ABw

B(X),

GHX = FX +

p∑

A=1

wA(X)VA + g(ζ,X)η,(2.29)

vA(HX) = uA(X) +

p∑

B=1

P
ψ
ABw

B(X).

Applying ψ and θ to both sides of (2.14)(i), respectively, and using (2.4)-
(2.5), (2.13)-(2.14) and (2.17), we have

GUA = −WA −

p∑

B=1

P
φ
ABVB, g(UA, VB) = P θAB +

p∑

C=1

P
φ
ACP

ψ
CB,(2.30)
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HUA = VA −

p∑

B=1

P
φ
ABWB , g(UA,WB) = −PψAB +

p∑

C=1

P
φ
ACP

θ
CB.(2.31)

Similarly, it follows from (2.14)(ii) and (2.14)(iii) that

HVA = −UA −

p∑

B=1

P
ψ
ABWB, g(VA,WB) = P

φ
AB +

p∑

C=1

P
ψ
ACP

θ
CB ,(2.32)

FVA =WA −

p∑

B=1

P
ψ
ABUB, g(VA, UB) = −P θAB +

p∑

C=1

P
ψ
ACP

φ
CB,(2.33)

FWA = −VA −

p∑

B=1

P θABUB, g(WA, UB) = P
ψ
AB +

p∑

C=1

P θACP
φ
CB,(2.34)

GWA = UA −

p∑

B=1

P θABVB , g(WA, VB) = −PφAB +

p∑

C=1

P θACP
ψ
CB .(2.35)

Differentiating (2.13)(i) covariantly and making use of (2.6)-(2.8), (2.13)-
(2.14) and (2.16), we obtain

(∇Y F )X = g(X, ξ)Y − g(X,Y )ξ −

p∑

A=1

g(HAX,Y )UA(2.36)

+

p∑

A=1

uA(X)HAY,

(∇Y u
A)X = − g(HAFX, Y )−

p∑

B=1

P
φ
ABg(HBX,Y )(2.37)

+

p∑

B=1

sAB(Y )uB(X).

Similarly, from (2.13)(ii) and (2.13)(iii), we also get

(∇YG)X = g(X, η)Y − g(X,Y )η −

p∑

A=1

g(HAX,Y )VA(2.38)

+

p∑

A=1

vA(X)HAY,

(∇Y v
A)X = − g(HAGX, Y )−

p∑

B=1

P
ψ
ABg(HBX,Y )(2.39)

+

p∑

B=1

sAB(Y )vB(X),
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(∇YH)X = g(X, ζ)Y − g(X,Y )ζ −

p∑

A=1

g(HAX,Y )WA(2.40)

+

p∑

A=1

wA(X)HAY,

(∇Y w
A)X = − g(HAHX,Y )−

p∑

B=1

P θABg(HBX,Y )(2.41)

+

p∑

B=1

sAB(Y )wB(X).

Differentiating (2.14)(i) covariantly and taking account of (2.6)-(2.8), (2.13)-
(2.14) and (2.16), we obtain

∇XUA = FHAX −

p∑

B=1

P
φ
ABHBX +

p∑

B=1

sAB(X)UB,(2.42)

∇XP
φ
AB = g(UA, HBX)− uB(HAX)−

p∑

C=1

P
φ
ACsCB(X)(2.43)

+

p∑

C=1

P
φ
BCsCA(X).

Similarly, from (2.13)(ii) and (2.13)(iii), we also get

∇XVA = GHAX −

p∑

B=1

P
ψ
ABHBX +

p∑

B=1

sAB(X)VB,(2.44)

∇XP
ψ
AB = g(VA, HBX)− vB(HAX)−

p∑

C=1

P
ψ
ACsCB(X)(2.45)

+

p∑

C=1

P
ψ
BCsCA(X),

∇XWA = HHAX −

p∑

B=1

P θABHBX +

p∑

B=1

sAB(X)WB,(2.46)

∇XP
θ
AB = g(WA, HBX)− wB(HAX)−

p∑

C=1

P θACsCB(X)(2.47)

+

p∑

C=1

P θBCsCA(X).

Moreover, it is clear from (2.2) that

∇Xξ = FX, ∇Xη = GX, ∇Xζ = HX,(2.48)
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HAξ = UA, HAη = VA, HAζ =WA.(2.49)

3. Laplacian for a global function defined on M

We define a function f on M by

f =

p∑

A=1

{uA(UA) + vA(VA) + wA(WA)}.

Then, since ξ, η, ζ are mutually orthogonal unit vector fields, (2.21)-(2.23)
yield

(3.1) f = tr F 2 + tr G2 + tr H2 + 3(n− 1), (tr := trace)

which means that f is independent of the choice of NA
′s and thus f is a global

function defined on M . f vanishes identically on M if and only if M is an
invariant submanifold under {φ, ψ, θ}.

From now on we compute the Laplacian ∆f . For any vector field X on M
it follows from (2.15), (2.17)-(2.18), (2.36), (2.38) and (2.40) that

1

2
Xf =

1

2
X(tr F 2 + tr G2 + tr H2)

= tr (∇XF )F + tr (∇XG)G+ tr (∇XH)H

= 2

p∑

A=1

{g(FHAX,UA) + g(GHAX,VA) + g(HHAX,WA)},

from which together with (2.20)-(2.23), (2.42), (2.44), (2.46) and (2.49), we get

1

4
(∇Y∇Xf −∇∇YXf) =

1

4
{∇Y (Xf)− (∇YX)f}(3.2)

=

p∑

A=1

{g((∇Y F )HAX,UA) + g(F (∇YHA)X,UA) + g(FHAX,∇Y UA)

+ g((∇YG)HAX,VA) + g(G(∇YHA)X,VA) + g(GHAX,∇Y VA)

+ g((∇YH)HAX,WA) + g(H(∇YHA)X,WA) + g(HHAX,∇YWA)

=

p∑

A=1

[g(UA, X)g(UA, Y ) + g(VA, X)g(VA, Y ) + g(WA, X)g(WA, Y )

− g((∇YHA)FUA, X)− g((∇YHA)GVA, X)− g((∇YHA)HWA, X)

− g(HAF
2HAX,Y )− g(HAG

2HAX,Y )− g(HAH
2HAX,Y )

+

p∑

B=1

{g(HAUB, X)g(HBUA, Y ) + g(HAVB , X)g(HBVA, Y )

+ g(HAWB , X)g(HBWA, Y )− g(HBHAX,Y )g(UB, UA)

− g(HBHAX,Y )g(VB, VA)− g(HBHAX,Y )g(WB ,WA)

− P
φ
ABg(HBFHAX,Y )− P

ψ
ABg(HBGHAX,Y )



1384 H. S. KIM AND J. S. PAK

− P θABg(HBHHAX,Y ) + sAB(Y )g(FHAX,UB)

+ sAB(Y )g(GHAX,VB) + sAB(Y )g(HHAX,WB)}].

On the other hand, substituting FUA, GVA and HWA for X into (2.11), re-
spectively, we have

(∇YHA)FUA = (∇FUA
HA)Y +

p∑

B=1

{sAB(Y )HBFUA − sAB(FUA)HBY },

(∇YHA)GVA = (∇GVA
HA)Y +

p∑

B=1

{sAB(Y )HBGVA − sAB(GVA)HBY },

(∇YHA)HWA = (∇HWA
HA)Y +

p∑

B=1

{sAB(Y )HBHWA − sAB(HWA)HBY },

which together with (3.2) yield

1

4
(∇Y∇Xf −∇∇Y Xf)

=

p∑

A=1

[g(UA, X)g(UA, Y ) + g(VA, X)g(VA, Y ) + g(WA, X)g(WA, Y )

− g((∇FUA
HA)Y,X)− g((∇GVA

HA)Y,X)− g((∇HWA
HA)Y,X)

− g(HAF
2HAX,Y )− g(HAG

2HAX,Y )− g(HAH
2HAX,Y )

+

p∑

B=1

{sAB(FUA)g(HBY,X) + sAB(GVA)g(HBY,X)

+ sAB(HWA)g(HBY,X) + g(HAUB, X)g(HBUA, Y )

+ g(HAVB , X)g(HBVA, Y ) + g(HAWB , X)g(HBWA, Y )

− g(HBHAX,Y )g(UB, UA)− g(HBHAX,Y )g(VB , VA)

− g(HBHAX,Y )g(WB ,WA)− P
φ
ABg(HBFHAX,Y )

− P
ψ
ABg(HBGHAX,Y )− P θABg(HBHHAX,Y )}].

Hence we have

1

4
∆f =

p∑

A=1

[g(UA, UA) + g(VA, VA) + g(WA,WA)− tr F 2H2
A − tr G2H2

A

(3.3)

− tr H2H2
A −∇FUA

(tr HA)−∇GVA
(tr HA)−∇HWA

(tr HA)

+

p∑

B=1

{sAB(FUA)tr HB + sAB(GVA)tr HB + sAB(HWA)tr HB

+ g(HAUB, HBUA) + g(HAVB , HBVA) + g(HAWB, HBWA)

− (tr HBHA)g(UB, UA)− (tr HBHA)g(VB , VA)



CODIMENSION REDUCTION FOR SUBMANIFOLDS 1385

− (tr HBHA)g(WB,WA)− P
φ
AB(tr FHAHB)

− P
ψ
AB(tr GHAHB)− P θAB(tr HHAHB)}].

On the other hand, (2.21)-(2.23) and (2.49) imply

tr F 2H2
A = −tr H2

A + g(UA, UA) +

p∑

B=1

g(HAUB, HAUB),

tr G2H2
A = −tr H2

A + g(VA, VA) +

p∑

B=1

g(HAVB, HAVB),

tr H2H2
A = −tr H2

A + g(WA,WA) +

p∑

B=1

g(HAWB , HAWB),

from which combined with (3.3) it follows that

1

4
∆f =

p∑

A=1

[3tr H2
A − (FUA)tr HA − (GVA)tr HA − (HWA)tr HA

(3.4)

+

p∑

B=1

{sAB(FUA)tr HB + sAB(GVA)tr HB + sAB(HWA)tr HB

+ g(HAUB, HBUA −HAUB) + g(HAVB, HBVA −HAVB)

+ g(HAWB , HBWA −HAWB)− (tr HBHA)g(UB, UA)

− (tr HBHA)g(VB , VA)− (tr HBHA)g(WB ,WA)

− P
φ
AB(tr FHAHB)− P

ψ
AB(tr GHAHB)− P θAB(tr HHAHB)}].

Now we prepare some lemmas for later use.

Lemma 3.1. Let M be a submanifold of a unit (4m + 3)-sphere S4m+3 to

which the Sasakian 3-structure vector fields ξ, η, ζ are always tangent. If the

normal connection of M in S4m+3 is flat, then

p∑

A=1

uA(UA),

p∑

A=1

vA(VA),

p∑

A=1

wA(WA)

are constant and consequently the function f is also constant.

Proof. For any vector field X tangent toM , it follows from (2.7), (2.15), (2.21)
and (2.42) that

1

2
X(

p∑

A=1

uA(UA)) =

p∑

A=1

g(∇XUA, UA)

=

p∑

A=1

[{g(FHAX,UA)−

p∑

B=1

P
φ
ABg(X,HBUA)]
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=

p∑

A,B=1

P
φ
ABg(X,HAUB −HBUA).

On the other hand, if the normal connection is flat, then by means of (2.49)
we obtain

(3.5)

HAUB −HBUA = (HAHB −HBHA)ξ = 0,

HAVB −HBVA = (HAHB −HBHA)η = 0,

HAWB −HBWA = (HAHB −HBHA)ζ = 0,

which together with the above equation yield X(
∑p
A=1 u

A(UA)) = 0, namely∑p
A=1 u

A(UA) is constant. Similarly we can prove that
∑p

A=1 v
A(VA) and∑p

A=1 w
A(WA) are also constant. �

Lemma 3.2. Let M be as in Lemma 3.1. If the normal connection of M in

S4m+3 is flat and the mean curvature vector field µ is parallel with respect to

the normal connection, then

3

p∑

A=1

tr H2
A =

p∑

A,B=1

{(tr HAHB)g(UA, UB) + (tr HAHB)g(VA, VB)(3.6)

+ (tr HAHB)g(WA,WB)}.

Proof. Owing to Lemma 3.1, it follows from (2.10), (3.4) and (3.5) that

3

p∑

A=1

tr H2
A =

p∑

A,B=1

{(tr HBHA)g(UB, UA) + (tr HBHA)g(VB , VA)

+ (tr HBHA)g(WB ,WA) + P
φ
AB(tr FHAHB)

+ P
ψ
AB(tr GHAHB) + P θAB(tr HHAHB)},

from which combined with (2.16) and HAHB = HBHA, we get (3.6). �

4. Submanifolds with dim(TM ∩ φTM⊥
∩ ψTM⊥

∩ θTM⊥) < p

Suppose that at a point x ∈M

dim(TxM ∩ φTxM
⊥ ∩ ψTxM

⊥ ∩ θTxM
⊥) = q.

Then we can choose in TM⊥ 3q orthonormal normal vector fields Nα(α =
1, . . . , 3q) in such a way that

φx(Nα)x, ψx(Nα)x, θx(Nα)x ∈ TxM ⊕ Span{Nα}α=1,...,3q,

and further
(4.1)
φx(N1)x = ψx(Nq+1)x = θx(N2q+1)x, . . . , φx(Nq)x = ψx(N2q)x = θx(N3q)x.
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In fact, if {(X1)x, . . . , (Xq)x} is an orthonormal basis of TxM ∩ φTxM
⊥ ∩

ψTxM
⊥ ∩ θTxM

⊥, then there exist 3q normal vector fields Nα such that

(X1)x = −φx(N1)x = −ψx(Nq+1)x = −θx(N2q+1)x, . . . ,

(Xq)x = −φx(Nq)x = −ψx(N2q)x = −θx(N3q)x
(4.2)

and consequently all of (Xi)x are mutually orthogonal to ξ, η and ζ because of
(2.3). With such a choice of Nα(α = 1, . . . , 3q), it follows from (2.14) that

(X1)x = (U1)x = (Vq+1)x = (W2q+1)x,(4.3a)

...

(Xq)x = (Uq)x = (V2q)x = (W3q)x,

(Uq+1)x = · · · = (U3q)x = 0,

(V1)x = · · · = (Vq)x = (V2q+1)x = · · · = (V3q)x = 0,

(W1)x = · · · = (W2q)x = 0,

P
φ
(q+1)(2q+1) = −Pφ(2q+1)(q+1) = 1, . . . , Pφ(2q)(3q) = −Pφ(3q)(2q) = 1,(4.3b)

P
ψ
(1)(2q+1) = −Pψ(2q+1)(1) = −1, . . . , Pψ(q)(3q) = −Pψ(3q)(q) = −1,

P θ(1)(q+1) = −Pψ(q+1)(1) = 1, . . . , P θ(q)(2q) = −Pψ(2q)(q) = 1,

Pφαν = 0, Pψαν = 0, P θαν = 0, (α = 1, . . . , 3q, ν = 3q + 1, . . . , p),

φx(Nν)x = −(Uν)x +

p∑

δ=3q+1

P
φ
νδ(x)(Nδ)x,(4.3c)

ψx(Nν)x = −(Vν)x +

p∑

δ=3q+1

P
ψ
νδ(x)(Nδ)x,

θx(Nν)x = −(Wν)x +

p∑

δ=3q+1

P θνδ(x)(Nδ)x,

where we have used (2.4) and (4.2). Furthermore, it is clear from (2.4), (4.1)
and (4.2) that

gx((Xi)x, (Uν)x) = 0, gx((Xi)x, (Vν)x) = 0, gx((Xi)x, (Wν)x) = 0,(4.4)

i = 1, . . . , q, ν = 3q + 1, . . . , p.

Lemma 4.1. If the normal connection is flat, q is constant over M .

Proof. We put

f1 =

p∑

A=1

uA(UA), f2 =

p∑

A=1

vA(VA), f3 =

p∑

A=1

wA(WA).

Assume that at y ∈M

dim(TyM ∩ φTyM
⊥ ∩ ψTyM

⊥ ∩ θTyM
⊥) = q′
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and let say q < q′. At x and y the function f1 can be rewritten as the following:

f1(x) =

3q∑

α=1

uα(Uα)(x) +

3q′∑

ν=3q+1

uν(Uν)(x) +

p∑

ν=3q′+1

uν(Uν)(x),(4.5)

f1(y) =

3q′∑

α=1

uα(Uα)(y) +

p∑

ν=3q′+1

uν(Uν)(y).

By means of Lemma 3.1, the function f1 is constant and consequently (4.3)
and (4.5) imply

3q +

3q′∑

ν=3q+1

uν(Uν)(x) +

p∑

ν=3q′+1

uν(Uν)(x) = 3q′ +

p∑

ν=3q′+1

uν(Uν)(y),

or equivalently,

(4.6) 3(q − q′) +

3q′∑

ν=3q+1

uν(Uν)(x) +

p∑

ν=3q′+1

{uν(Uν)(x) − uν(Uν)(y)} = 0.

On the other hand, it follows from (2.21) that uν(Uν) = 1 −
∑p

A=1(P
φ
νA)

2

and thus

3q′∑

ν=3q+1

uA(UA)(x) = 3(q′ − q)−

3q′∑

ν=3q+1

p∑

A=1

(PφνA)
2(x),

from which, inserting back into (4.6), we have

(4.7) −

3q′∑

ν=3q+1

p∑

A=1

(PφνA)
2(x) +

p∑

ν=3q′+1

{uν(Uν)(x) − uν(Uν)(y)} = 0.

Since uν(Uν) and P
φ
νA are differentiable functions, we obtain

lim
x→y

{uν(Uν)(x) − uν(Uν)(y)} = 0.

Hence it is clear from (4.7) that

p∑

A=1

(PφνA)
2(y) = 0, i.e., PφνA(y) = 0, ν = q + 1, . . . , q′,

which is a contradiction because of (4.3b). By using the functions f2 or f3 we
can derive the same conclusion. �

In the following we assume that 3q < p and that the mean curvature vector
field µ is parallel with respect to the normal connection. Then (2.21)-(2.23),
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(3.6), (4.3) and (4.4) yield

p∑

ν=3q+1

(tr H2
ν )[{1− g(Uν , Uν)}+ {1− g(Vν , Vν)}+ {1− g(Wν ,Wν)}]

=

p∑

ν=3q+1

(tr H2
ν )

p∑

A=1

{(PφνA)
2 + (PψνA)

2 + (P θνA)
2} = 0,

which implies tr H2
ν = 0 for ν = 3q + 1, . . . , p. Thus Hν = 0, ν = 3q + 1, . . . , p

and Uν = Vν = Wν = 0, ν = 3q + 1, . . . , p by means of (2.49). Particularly,
when q = 0, we have the following.

Theorem 4.2. Let M be an (n+3)-dimensional complete submanifold isomet-

rically immersed in a unit (4m+3)-sphere S4m+3to which the structure vector

fields ξ, η, ζ are always tangent. Suppose that the normal connection of M in

S4m+3 is flat and that the mean curvature vector field is parallel with respect

to the normal connection. If dim(TxM ∩ φTxM
⊥ ∩ ψTxM

⊥ ∩ θTxM
⊥) = 0 at

some point x ∈ M , then M is a totally geodesic, invariant submanifold and

consequently a great sphere.

Corollary 4.3. Let M be an (n+3)-dimensional complete, minimal submani-

fold isometrically immersed in a unit (4m+3)-sphere S4m+3to which the struc-

ture vector fields ξ, η, ζ are always tangent. Suppose that the normal connection

ofM in S4m+3 is flat and that the mean curvature vector field is parallel with re-

spect to the normal connection. If dim(TxM∩φTxM
⊥∩ψTxM

⊥∩θTxM
⊥) = 0

at some point x ∈M , then M is a totally geodesic, invariant submanifold and

consequently a great sphere.

On the other side, in order to consider the case where 0 < 3q < p, we will
prepare the following two Lemmas.

Lemma 4.4. For α = 1, . . . , 3q and ν = 3q + 1, . . . , p, sνα = 0.

Proof. Since Uν = Vν =Wν = 0 and Hν = 0, (2.42), (2.44) and (2.46) give

p∑

B=1

sνBUB =
∑

P
φ
νBHBX,

p∑

B=1

sνBVB =
∑

P
ψ
νBHBX,

p∑

B=1

sνBWB =
∑

P θνBHBX,

from which together with Pφαν = Pψαν = P θαν = 0, it follows that

q∑

α=1

sναUα = 0,

2q∑

α=q+1

sναVα = 0,

3q∑

α=2q+1

sναWα = 0.

Hence it is clear from (4.3) that sνα = 0 for α = 1, . . . , 3q; ν = 3q+1, . . . , p. �



1390 H. S. KIM AND J. S. PAK

Lemma 4.5. The first normal space of M in S4m+3 is invariant under parallel

translation with respect to the normal connection.

Proof. Since Xi 6= 0(i = 1, . . . , q), Uν = Vν = Wν = 0 and Hν = 0(ν =
3q + 1, . . . , p), we can see that (2.49) and (4.3) imply that the first normal
space is spanned by Nα(α = 1, . . . , 3q). For any vector field X tangent to M ,
by means of Lemma 4.4 we have

∇⊥

XNα =

p∑

A=1

sαA(X)NA =

3q∑

β=1

sαβ(X)Nβ,

which show that the first normal space is invariant under parallel translation
with respect to the normal connection. �

Combining Lemma 4.4 with the results due to Allendoerfer [1] and Erbacher
[4] yields that there exists a totally geodesic submanifold M ′ of S4m+3 of di-
mension (n + 3 + 3q) such that M ⊂ M ′. By means of (4.2) and (4.3) with
Uν = Vν =Wν = 0(ν = 3q+1, . . . , p), we can easily see thatM ′ is an invariant
submanifold of S4m+3 and consequently a (4m′ +3)-dimensional sphere for an
integer m′.

Summing up, we may conclude:

Theorem 4.6. Let M be an (n + 3)-dimensional submanifold isometrically

immersed in a unit (4m + 3)-sphere S4m+3to which the structure vector fields

ξ, η, ζ are always tangent. Suppose that the normal connection of M in S4m+3

is flat and that the mean curvature vector field is parallel with respect to the

normal connection. If dim(TxM ∩φTxM
⊥∩ψTxM

⊥∩ θTxM
⊥) = q(3q < p) at

some point x ∈ M , then either M is a totally geodesic, invariant submanifold

of S4m+3, or there exists a totally geodesic, invariant submanifold Sn+3+3q of

S4m+3 such that M ⊂ Sn+3+3q.

5. Submanifolds with L-flat normal connection

In this section we try to apply the results which are obtained in the previous
sections to submanifolds of a quaternionic projective space.

LetQPm be a real 4m-dimensional quaternionic projective space with quater-
nionic Kählerian structure {J,K,L} and let g̃ be the Fubini-Study metric which
satisfies the Hermitian conditions

(5.1) g̃(JX̃, JỸ ) = g̃(X̃, Ỹ ), g̃(KX̃,KỸ ) = g̃(X̃, Ỹ ), g̃(LX̃, LỸ ) = g̃(X̃, Ỹ ).

Then we have

J2 = −I, K2 = −I, L2 = −I,

J = KL = −LK, K = LJ = −JL, L = JK = −KJ
(5.2)
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and

∇̃X̃J = r(X̃)K − q(X̃)L,

∇̃X̃K = −r(X̃)J + p(X̃)L,

∇̃X̃L = q(X̃)J − p(X̃)K

(5.3)

for any vector field X̃ in QPm, where ∇̃ denotes the Riemannian connection
with respect to g̃, and p, q and r are certain local 1-forms (cf. [5]). It is
well known (cf. [6, 15]) that the quaternionic Kählerian structure {J,K,L} is
induced from the Sasakian 3-structure {φ, ψ, θ} of a unit (4m+3)-sphere S4m+3

by the Hopf fibration π̃ : S4m+3 → QPm. Relations between these structures
are given by

φ = J∗, ψ = K∗, θ = L∗

g(X,Y ) = g̃∗(X,Y ) + fξ(X)fξ(Y ) + fη(X)fη(Y ) + fζ(X)fζ(Y ),
(5.4)

where ∗ denotes the horizontal lift of indicated quantities. We notice that
the structure vector fields ξ, η and ζ are the unit vertical vector fields for the
fibration.

Let M be an n-dimensional real submanifold of QPm and construct a S3-
bundle π̃−1(M) over M in such a way that the following diagram is commuta-
tive :

π̃−1(M)
ι̃

−−−−→ S4m+3

π

y
yπ̃

M
ι

−−−−→ QPm

where ι̃ : π̃−1(M) → S4m+3 and ι : M → QPm are isometric immersions. Then
π̃−1(M) is an (n+3)-dimensional submanifold of S4m+3 to which the structure
vector fields ξ, η and ζ are tangent. Given an orthonormal basis N1, . . . , Np
in TM⊥, horizontal lifts N∗

1 , . . . , N
∗
p are mutually orthonormal normal vector

fields to π̃−1(M) with respect to the Riemannian metric g of π̃−1(M) which
is induced from that of S4m+3. The transforms for X ∈ TM and for NA by
{J,K,L} are, respectively, written by

JX = F̀X +

p∑

A=1

ùA(X)NA, KX = G̀X +

p∑

A=1

v̀A(X)NA,(5.5)

LX = H̀X +

p∑

A=1

ẁA(X)NA,

JNA = −ÙA +

p∑

B=1

P JABNB, KNA = −V̀A +

p∑

B=1

PKABNB,(5.6)

LNA = −ẀA +

p∑

B=1

PLABNB,
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where {F̀ , G̀, H̀} and {P J , PK , PL} define endomorphisms of TM and of TM⊥,

respectively, and {ÙA, V̀A, ẀA} and {ùA, v̀A, ẁA} are local tangent vector fields
and local 1-forms on M . Denoting by g̀ the Riemannian metric induced on M
from that of QPm, we have

g̀(F̀X, Y ) = −g̀(X, F̀Y ), g̀(G̀X, Y ) = −g̀(X, G̀Y ),(5.7)

g̀(H̀X, Y ) = −g̀(X, H̀Y ),

P JAB = −P JBA, PKAB = −PKBA, PLAB = −PLBA,(5.8)

ùA(X) = g̀(ÙA, X), v̀A(X) = g̀(V̀A, X), ẁA(X) = g̀(ẀA, X)(5.9)

for vector fields X,Y tangent to M . Applying J,K and L to (5.5) and making
use of (5.2), we can easily obtain the following relations (5.10) and (5.11):

F̀ 2X = −X +

p∑

A=1

ùA(X)ÙA, G̀2X = −X +

p∑

A=1

v̀A(X)V̀A,(5.10)

H̀2X = −X +

p∑

A=1

ẁA(X)ẀA,

G̀H̀X = F̀X +

p∑

A=1

ẁA(X)V̀A, H̀G̀X = −F̀X +

p∑

A=1

v̀A(X)ẀA,(5.11)

H̀F̀X = G̀X ++

p∑

A=1

ùA(X)ẀA, F̀ H̀X = −G̀X +

p∑

A=1

ẁA(X)ÙA,

F̀ G̀X = H̀X +

p∑

A=1

v̀A(X)ÙA, G̀F̀X = −H̀X +

p∑

A=1

ùA(X)V̀A.

Next, applying J,K and L to (5.6) and taking account of (5.2), we have the
following relations (5.12)-(5.15):

F̀ ÙA=−

p∑

B=1

P JABÙB, G̀V̀A=−

p∑

B=1

PKABV̀B , H̀ẀA=−

p∑

B=1

PLABẀB ,(5.12)

G̀ÙA = −ẀA −

p∑

B=1

P JABV̀B , H̀ÙA = V̀A −

p∑

B=1

P JABẀB ,(5.13)

H̀V̀A = −ÙA −

p∑

B=1

PKABẀB , F̀ V̀A = ẀA −

p∑

B=1

PKABÙB,

F̀ ẀA = −V̀A −

p∑

B=1

PLABÙB, G̀ẀA = ÙA −

p∑

B=1

PLAB V̀B,

g̀(ÙA, ÙB) = δAB +

p∑

C=1

P JACP
J
CB , g̀(V̀A, V̀B) = δAB +

p∑

C=1

PKACP
K
CB,(5.14)
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g̀(ẀA, ẀB) = δAB +

p∑

C=1

PLACP
L
CB,

g̀(ÙA, V̀B) = PLAB +

p∑

C=1

P JACP
K
CB, g̀(V̀A, ẀB) = P JAB +

p∑

C=1

PKACP
L
CB,(5.15)

g̀(ẀA, ÙB) = PKAB +

p∑

C=1

PLACP
J
CB .

Let ∇̀ and ∇̀⊥ denote the Riemannian connection induced in M and the
normal connection of M in QPm, respectively. Denoting by H̀A and s̀AB
the Weingarten maps with respect to NA and the connection forms of ∇̀⊥,

respectively, we have Gauss and Weingarten formulas for ∇̃, ∇̀ and ∇̀⊥ which
are similar to (2.7). Differentiating (5.5) covariantly and using (5.3), we can
easily obtain
(5.16)

(∇̀Y F̀ )X = r(Y )G̀X − q(Y )H̀X −

p∑

A=1

g̀(H̀AX,Y )ÙA +

p∑

A=1

ùA(X)H̀AY,

(∇̀Y G̀)X = −r(Y )F̀X + p(Y )H̀X −

p∑

A=1

g̀(H̀AX,Y )V̀A +

p∑

A=1

v̀A(X)H̀AY,

(∇̀Y H̀)X = q(Y )F̀X − p(Y )G̀X −

p∑

A=1

g̀(H̀AX,Y )ẀA +

p∑

A=1

ẁA(X)H̀AY.

Differentiating (5.6) covariantly and using (5.3), we have the following relations
(5.17) and (5.18):

∇̀X ÙA = r(X)V̀A − q(X)ẀA + F̀ H̀AX −

p∑

B=1

P JABH̀BX +

p∑

B=1

s̀AB(X)ÙB,

(5.17)

∇̀X V̀A = −r(X)ÙA + p(X)ẀA + G̀H̀AX −

p∑

B=1

PKABH̀BX +

p∑

B=1

s̀AB(X)V̀B,

∇̀XẀA = q(X)ÙA − p(X)V̀A + H̀H̀AX −

p∑

B=1

PLABH̀BX +

p∑

B=1

s̀AB(X)ẀB,

∇̀⊥

XP
J
AB := ∇XP

J
AB +

p∑

C=1

P JCB s̀CA(X) +

p∑

C=1

P JAC s̀CB(X)

(5.18)

= r(X)PKAB − q(X)PLAB + g̀(ÙA, H̀BX)− ùB(H̀AX),

∇̀⊥

XP
K
AB := ∇XP

K
AB +

p∑

C=1

PKCB s̀CA(X) +

p∑

C=1

PKAC s̀CB(X)
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= −r(X)P JAB + p(X)PLAB + g̀(V̀A, H̀BX)− v̀B(H̀AX),

∇̀⊥

XP
L
AB := ∇XP

L
AB +

p∑

C=1

PLCB s̀CA(X) +

p∑

C=1

PLAC s̀CB(X)

= q(X)P JAB − p(X)PKAB + g̀(ẀA, H̀BX)− ẁB(H̀AX).

On the other hand, QPm is of constant Q-sectional curvature 4 and so the

curvature tensor R̃ of QPm has the following form (cf. [5]):

R̃(X̃, Ỹ )Z̃ = g̃(Ỹ , Z̃)X̃ − g̃(X̃, Z̃)Ỹ

+ g̃(JỸ , Z̃)JX̃ − g̃(JX̃, Z̃)JỸ − 2g̃(JX̃, Ỹ )JZ̃

+ g̃(KỸ , Z̃)KX̃ − g̃(KX̃, Z̃)KỸ − 2g̃(KX̃, Ỹ )KZ̃

+ g̃(LỸ , Z̃)LX̃ − g̃(LX̃, Z̃)LỸ − 2g̃(LX̃, Ỹ )LZ̃.

Thus, using (5.5) and (5.6), we have the following Codazzi and Ricci equations
(5.19) and (5.20), respectively:

(∇̀XH̀A)Y − (∇̀Y H̀A)X(5.19)

=

p∑

B=1

{s̀AB(X)H̀BY − s̀AB(Y )H̀BX}

− g̀(ÙA, Y )F̀X + g̀(ÙA, X)F̀Y − 2g̀(F̀X, Y )ÙA

− g̀(V̀A, Y )G̀X + g̀(V̀A, X)G̀Y − 2g̀(G̀X, Y )V̀A

− g̀(ẀA, Y )H̀X + g̀(ẀA, X)H̀Y − 2g̀(H̀X, Y )ẀA,

R̀⊥(X,Y )NA(5.20)

=

p∑

B=1

{g̀((H̀AH̀B − H̀BH̀A)X,Y )

+ g̀(ÙA, Y )g̀(ÙB, X)− g̀(ÙA, X)g̀(ÙB , Y )− 2g̀(F̀X, Y )P JAB

+ g̀(V̀A, Y )g̀(V̀B , X)− g̀(V̀A, X)g̀(V̀B , Y )− 2g̀(G̀X, Y )PKAB

+ g̀(ẀA, Y )g̀(ẀB , X)− g̀(ẀA, X)g̀(ẀB, Y )− 2g̀(H̀X, Y )PLAB}NB,

where R̀⊥ denotes the curvature tensor of the normal connection ∇̀⊥. Here
we notice that if M is an invariant submanifold of QPm, then M is totally
geodesic (cf. [6]) and ÙA = V̀A = ẀA = 0 (A = 1, . . . , p).

If R⊥ satisfies

R̀⊥(X,Y )NA(5.21)

=

p∑

B=1

{−2g̀(F̀X, Y )P JAB − 2g̀(G̀X, Y )PKAB − 2g̀(H̀X, Y )PLAB}NB
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and

∇̀⊥

XP
J
AB = r(X)PKAB − q(X)PLAB,

∇̀⊥

XP
K
AB = −r(X)P JAB + p(X)PLAB,

∇̀⊥

XP
L
AB = q(X)P JAB − p(X)PKAB,

(5.22)

then the normal connection ofM is said to be lift-flat or briefly L-flat. It is well
known ([17, Theorem 3.5, p. 431]) that the normal connection of M is L-flat
if and only if the normal connection of π̃−1(M) is flat. In [17], when (5.22) is
satisfied, the structure induced in the normal bundle of M in QPm is said to
be parallel.

Let HA, µ and µ̀ be the Weingarten map with respect to N∗

A, the mean
curvature vector field of π̃−1(M) and of M , respectively. Then the following
relations are known (cf. [16]):

HAX
∗ = (H̀AX)∗ + g̀(ÙA, X)∗ξ + g̀(V̀A, X)∗η + g̀(ẀA, X)∗ζ,(5.23)

tr HA = (tr H̀A)
∗, (A = 1, . . . , p)(5.24)

∇⊥

X∗µ =
n

n+ 3
(∇̀⊥

X µ̀)
∗,(5.25)

P JAB
∗

= sAB(ξ), PKAB
∗

= sAB(η), PLAB
∗

= sAB(ζ).(5.26)

It is clear from (5.23) that M is minimal if and only if π̃−1(M) is minimal (cf.
[16]). Finally we verify

Theorem 5.1. Let M be an n-dimensional real minimal submanifold of QPm.

If the normal connection of M in QPm is L-flat and at some point of x ∈M ,

dim(TxM ∩ JTxM
⊥ ∩ KTxM

⊥ ∩ LTxM
⊥) = q(3q < p := 4m − n), then

either M is a totally geodesic, invariant submanifold of QPm or there exist a

real (n+3q)-dimensional totally geodesic, invariant submanifold QP (n+3q)/4 of

QPm such that M ⊂ QP (n+3q)/4.

Proof. Since dim(TxM∩JTxM
⊥∩KTxM

⊥∩LTxM
⊥) = q and the Riemannian

metric g̃ satisfies the Hermitian conditions, there exist mutually orthonormal
normal vectors n1, . . . , n3q such that

Jxn1 = Kxnq+1 = Lxn2q+1, . . . , Jxnq = Kxn2q = Lxn3q

constitute an orthonormal basis for TxM ∩ JTxM
⊥ ∩KTxM

⊥ ∩ LTxM
⊥. We

extend n1, . . . , n3q to local fields N1, . . . , N3q in TM
⊥ and chooseN3q+1, . . . , Np

in TM⊥ so that N1, . . . , N3q, N3q+1, . . . , Np are mutually orthonormal. Then
N∗

1 , . . . , N
∗
3q, N

∗
3q+1, . . . , N

∗
p are orthonormal vector fields in T π̃−1(M)⊥. Let

y ∈ π̃−1(x), then

dim(Tyπ̃
−1(M) ∩ φyTyπ̃

−1(M)⊥ ∩ ψyTyπ̃
−1(M)⊥ ∩ θyTyπ̃

−1(M)⊥) = q

because of (5.4). Furthermore, π̃−1(M) is minimal in S4m+3 because of (5.24)
and the normal connection of π̃−1(M) is flat. Thus, by means of Theo-
rem 4.6, π̃−1(M) is a totally geodesic invariant submanifold Sn+3 of S4m+3,
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or there exists a totally geodesic invariant submanifold Sn+3+3q such that
π̃−1(M) ⊂ Sn+3+3q. Sn+3+3q is a S3-bundle over a quaternionic projective
space QP (n+3q)/4 of a real (n+ 3q)-dimension and {ξ, η, ζ} are the unit verti-
cal vector fields of the S3-bundle. Thus the immersion : QP (n+3q)/4 → QPm

is compatible with the Hopf fibration π̃ : S4m+3 → QPm. Since Sn+3+3q is
a totally geodesic submanifold in S4m+3, (5.23) implies that QP (n+3q)/4 is a
totally geodesic, invariant submanifold of QPm. This completes the proof. �
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