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0. Introduction

Let M be an (n+ 1)-dimensional submanifold of a unit sphere §2™+! of
dimension 2m+1 with Sasakian structure tensors (¢,£,7, ¢). We suppose
that M is tangent to the structure vector field £ of $2™*!. For any vector
field X tangent to M, we put ¢X = PX+ FX, where PX is the tangential
part and FX the normal part of ¢X. If ¢T,(M)* is contained in T,(M)
for any point r of M, then M is called a generic submanifold of §2™+1!,

We define the notion of n-parallel second fundamental form of M. If the
second fundamental form A of M satisfies the identity g((VxA)vY,Z) =0
for any vector field X, Y and Z orthogonal to ¢ and for any vector field
V normal to M, then M is said to be 5 - parallel.

If the second fundamental form A of M satisfies A, P = PA, for any
direction V,,{V,} being an orthonormal frame of the normal space, and if
the normal connecton of M is flat , then the second fundamental form A
of M is parallel (see [5]). On the other hand, we can see that A,P = PA,
for any direction V, is equivalent to (V¢A4), = 0 for any direction V, under
the condition that the normal connection of M is flat.

The purpose of the present paper is to prove that if the second funda-
mental form A of a compact minimal generic submanifold with flat normal
connection of $2™*1 is n-parallel, then A is parallel.
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1. Preliminaries

Let S2™*1 be a (2m + 1)-dimensional unit sphere with Sasakian struc-
ture tensors (¢, £,7,g). The structure tensors of $?™+! satisfy

$*X =-X+9(X), ¢£=0, n¢)=1, n(¢X)=0,

9(8X,8Y) = g(X,Y) - n(X)n(Y), n(X)=g(X,¢)

for any vector fields X and Y on $?™+1. We denote by V the operator
of covariant differentiation with respect to the metric tensor ¢ on §2m+1,
We then have

VxE=0¢X, (Vx¢)Y =—g(X,Y)¢+9(Y)X = R(X,¢)Y,

R denoting the Riemannian curvature tensor of S?™+!, Let M be an
(n + 1)-dimensional submanifold of S?™*!. Throughout this paper, we
assume that the submanifold M of S?™+1 is tangent to the structure
vector field £.

We denote by the same g the Riemannian metric tensor field induced
on M from that of S?™+!, The operator of covariant differentiation with
respect to the induced connection on M will be denoted by V. Then the
Gauss and Weingarten formulas are given respectively by

VxY =vxY + B(X,Y), VyX = —AvX + DxV

for any vector fields X and Y tangent to M and any vector field V normal
to M, where D denotes the operator of covariant differentiaton with re-
spect to the linear connection induced in the normal bundle T(M)* of M.
A and B appearing here are both called the second fundamental forms of
M and are related by

9(B(X,Y),V) =g(AvX,Y).

The second fundamental form Ay in the direction of the normal vector V
can be considered as a symmetric (n + 1,n + 1)-matrix.
The covariant derivative (Vx A)y of A is defined to be

(VxAWY = Vx(AvY) - ApyvY — AyvxY.

If (VxA)vY = 0 for any vector fields X and Y tangent to M, then the
second fundamental form of M is said to be parallel in the direction of V.
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If the second fundamental form is parallel in any direction, it is said to be
parallel.

The mean curvature vector v of M is defined to be v = TrB/(n + 1),
where TrB denoting the trace of B. If v = 0, then M is said to be
minimal. If the second fundamental form A vanishes identically, then M
is said to be totally geodesic. A vector field V normal to M is said to be
parallel if DxV = 0 for any vector field X tangent to M.

For any vector field X tangent to M, we put

¢X = PX + FX,

where PX is the tangential part and FX the normal part of ¢X.Then
P is an endomorphism on the tangent bundle T(M) and F is a normal
bundle valued 1-form on the tangent bundle T(M).

I ¢T,(M)* is contained in T, (M) for any point = of M, then M is
called a generic submanifold of $?™*! (see [3]).

In the following we suppose that M is a generic submanifold of SZ™+1,
Then, for any vector field V normal to M, ¢V is tangent toM. We also
have

FP =0, 9(PX,Y)+g¢(X,PY)=0,
g(FX,V)+g¢(X,9V)=0.

For any vector field X tangent to M, we have

Vxé=¢X =Vx¢+ B(X,E),
from which

Vx{ =PX, AvE=-9V, B(X,{)=FX.
Furthermore, we see
(VxP)Y = AryX + ¢B(X,Y) — g(X,Y){ + n(Y)X,
(VxF)Y = -B(X, PY).
Vx¢V = -PAyX + ¢DxV.

We also have
ApxY —ApyX =0

for any vectors X and Y in ¢T,(M)*.
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Moreover, equations of the Gauss and Codazzi of M are given respec-
tively by

R(X,Y)Z = ¢(Y,Z2)X — g(X,Z2)Y + Apiy,2)X — Ap(x,2)Y,
where R being the Riemannian curvature tensor of M,
9(VxAWY,Z) - g((Vy A)v X, Z)

=g((VxB)Y,2),V) - g((VyB)(X,Z),V) = 0.
We define the curvature tensor R of the normal bundle of M by

RYX,Y)V = DxDyV — DyDxV — Dix y}V.
Then we have equation of the Ricci

g(RHX, Y)YV, U) + ¢([Av, Av]X,Y) = 0.

If R+ vanishes identically, the normal connection of M is said to be flat.

2. The proof of Theorem

Let M be an (n+ 1)- dimensional generic submanifold of 5?™+1. If the
second fundamental form A of M satisfies the identity g((Vx A)vY,Z) =0
for any vector fields X, Y and Z orthogonal to ¢ and for any vector field
V normal to M, then M is said to be n-parallel.

We prove the following

THEGREM 1. Let M be a compact (n+1)-dimensional (n > 4) minimal
generic submanifold of $*™*+! with flat normal connection. If the second
fundamental form A of M is n-parallel, then A is parallel.

To prove the theorem we prepare some lemmas. We denote by S the
Ricci tensor of M. Then we have generally (Yano [2])

div(V x X)) — div((div X )X)

= S(X,X) + 3IL(X)gl? ~ [VXP? ~ (divX ",

where (L(X)g)Y,Z) = ¢g(VyX,Z) 4+ ¢g(vzX,Y) and | | denotes the
length of a tensor. If U is a parallel section in the normal bundle of M, then
Vx¢U = ~PAy X. Hence we have divgll = ~TrPAy = 0 since P is skew
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symmetric and Ay is symmetric. Thus we also have div((divéU)sU) = 0.
Substituting these equation into the equation above, we find

div(V4ul) = S8, 80) + 3l[Au, PIP? + 94U}

by the equation (L(tU)g)(X,Y) = ¢([Av, P]X,Y). Since M is minimal,
the Gauss equation implies

S(X,Y) =ng(X,Y) = ) g(AaX, AsY),

where A, is the second fundamental form with respect to the direction
Va, {V.} being an orthonormal frame of the normal space.
On the other hand, we obtain

IVeU|? = TrAu® — g(4U,8U) — Y _ g(AadU, AagU).

Combining the last three equations, we find
. : 1
div(V4ugU) = (n + 1)g(4U, ¢U) - TrAv* + 3 [[Av, P)I".

Therefore, we have

LEMMA 1. Let M be an (n + 1)-dimensional minimal generic subman-
ifold of $?™+! with flat normal connection. Then

div(z V¢a¢Va) =(n+1)P - ZTrAa2 + “;‘Z I[A,,,PHQ,

where V4, is the covariant differentiation with respect to ¢V,.

For any (n + 1)-dimensional minimal submanifold of a unit sphere we
have generally (Simons [1])

LEMMA 2. Under the same assumptions like that of Lemma 1, we have
1
—SOIAP +|VAP = ) (Trd. Al ~(n+ 1)A
Let g = €, €y, ..., e, be alocal field of orthonormal frames of M. We use

the convention that the ranges of indices are ¢,s,r = 1,...,n. To simplify
the notation, we put V,; the covariant differentiation with respect to e;,.



22 Sung-Baik Lee, Seung-Gook Han, Seong Soo Ahn and Masahiro Kon
Since we have
(ViA)ab = Vi(Adb) — Al(Vi€) = [Pa Aa]Ct
for any a and t, it follows that

VAP = g(VA,VA) = 3 " g((ViA)aes )’ +3 D g((Vid)ak, €,)?
= Zg((vtA)aem er)2 +3 Z I{Aa,PHZ'

From Lemma 2 we obtain
1 2 2 2\2 2
~5AIAP + v 4] 2 D ATrALY - (n+1)) TrAl.
Therefore we have the inequality

~5AI4P + 3 o(Tedduc, er)?

> ) (Tral)Y? - (n+1) Y Tra,’+3) |[4a, P

Using Lemma 1, the right hand side of the inequality above reduces to
Y (Tral)? —(n+1)Y TrA’ +33 |[Aq, PI?
=) (TrAY? = (n+ 7)) TrA? +6(n+1)p - 3div(}_ VeadVa)
= {TrA - 6H{TrA? — (n+1)} - 6div(D) " VpadVa)
= ATrAl - (n+ )P +(n=5){3_ TrA ~ (n+1)p}~div(D_ V4adVa).

Consequentry, we obtain

THEOREM 2. Let M be a compact (n+ 1)-dimensional minimal generic
submanifold of S*™*! with flat normal connection. Then

/M S o(Vedhaener) +12 5(n~3)

/M Z [4a, P]? * 1 + /M Z{TrAa ~(n+ 1)} *1.

From Theorem 2, if n > 4 and if the second fundamental form A of
M is n-parallel, then TrA4,2 = n + 1 for all a, and hence ZT?'Aa2 ==
(n + 1)p. Then, by Lemma 1, we see [4,,P] = 0, i.e., A, P = PA, for all
a. Moreover, we see that (V4A).£ = 0 for all ¢ and a. Consequently, the
second fundamental form A of M is parallel. From these considerations
and Theorems in [4] we have
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THEOREM 3. Let M be a compact (n+1)-dimensional (n > 4) minimal
generic submanifold with flat normal connection of S2™*!. If the second
fundamental form of M is n-parallel, then M 1is

S™M(ry) x -+ x §™E)(ry),

re=(m)/(n+ D2t =108, n+1=3 m(b),

where m(1),...,m(k) are odd numbers such that 0 < m(1),...,m(k) <
n + 1, codimension p = k — 1.
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