• Title/Summary/Keyword: flares

Search Result 179, Processing Time 0.02 seconds

Solar Flare Occurrence Probability depending on Sunspot Group Classification and Its Area Change

  • Lee, Kang-Jin;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.40.2-40.2
    • /
    • 2011
  • We investigated solar flare occurrence probability depending on sunspot group classification and its area change. For this study, we used the McIntosh sunspot group classification and then selected most flare-productive six sunspot groups : DKI, DKC, EKI, EKC, FKI and FKC. For each group, we classified it into three sub-groups according to the sunspot group area change : increase, steady and decrease. For sunspot data, we used the NOAA's active region information for 19 years (from 1992.01 to 2010.12). As a result, we found that the probabilities of the all "increase" sub-groups is noticeably higher than those of other sub-groups. In case of FKC McIntosh sunspot group, for example, the M-class flare occurrence probability of the "increase" sub-group is 65% while the "decrease" and "steady" sub-groups are 50% and 44%, respectively. In summary, when sunspot group area increases, the probability of solar flares noticeably increases. This is statistical evidence that magnetic flux emergence is an very important mechanism for triggering solar flares.

  • PDF

Triggering processes of two different eruptive events in active region 11283 using observation-based models

  • Kang, Jihye;Inoue, Satoshi;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.59.3-60
    • /
    • 2021
  • An investigation of flare-producing magnetic structure is important for studying an initiation of eruptive events. In this study we select two different eruptive events, M5.3 and X1.2 flares in active region (AR) 11283. Both events occur in the same AR, but brightenings of flare ribbons, seen in EUV images, are different shapes. In order to understand triggering process of eruptive flares, we reconstruct coronal magnetic fields using two observation-based models: a nonlinear force-free field (NLFFF) extrapolation model and a magnetohydodynamic (MHD) one. The NLFFFs show that sheared arcades and overlying fan-spine configurations are found in both cases, but the distributions of magnetic twist are weaker before the M5.3 flare than before the X1.2 flare. The MHD model is to explore the temporal evolution of coronal magnetic structures by considering the NLFFF with an anomalous resistivity as an initial condition. We discuss possible processes of two eruptive events using the MHD as well as the NLFFF model results.

  • PDF

Relationship of ground level enhancements with solar erupted factors

  • Firoz, K.A.;Cho, Kyung-Suk;Dorotovic, Ivan;Pinter, Teodor;Kaushik, Subhash C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.34.2-34.2
    • /
    • 2010
  • Cosmic rays registered by Neutron Monitors on the surface of the Earth are believed to be coming from outer space, and sometimes also from the exotic objects of the Sun. Ground level enhancement (GLE) is the sudden, sharp and short-lived increase in cosmic rays originated from the Sun. Since GLE is the signature in solar cosmic ray intensity, different solar factors erupted from the Sun can be responsible for causing it. In this context, an attempt has been made to determine quantitative relationships of GLEs > 5% with simultaneous solar, interplanetary and geophysical factors from 1997 through 2006 thereby searching the perpetrators which seem to be causing them. The study has revealed that solar flares are stronger ($0.71{\times}10-4$ w/m2) during GLE peaks than the solar flares ($1.10{\times}10-5$ w/m2) during GLE non-peaks and backgrounds. On the average, the solar wind plasma velocity and interplanetary magnetic field are found stronger during the GLE peaks than the GLE non-peaks and backgrounds indicating that the solar flares, in conjunction with interplanetary shocks, sometimes may cause GLE peaks. Direct proportionality of GLE peaks to simultaneous solar energetic particle (SEP) fluxes imply that the GLE peaks may often be caused by SEP fluxes. Although the high intensity of SEP fluxes are also seen extended few minutes even after GLE peaks, the mean (373.62 MeV) of the GLE associated SEP fluxes is much stronger than the mean (10.35 MeV) of the non-GLE associated SEP fluxes. Evidences are also supported by corresponding SEP fluences that the the mean fluence (${\sim}5.32{\times}107/cm2$) across GLE event was more intense than the mean fluence (${\sim}2.53{\times}106/cm2$) of SEP fluxes across non-GLE event.

  • PDF

Identification of backside solar proton events

  • Park, Jin-Hye;Moon, Yong-Jae;Lee, Dong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2010
  • Solar proton events, whose fluxes are larger than 10 particles cm-2 sec-1 ster-1 for >10 MeV protons, have been observed since 1976. NOAA proton event list from 1997 to 2006 shows that most of the events are related to both flares and CMEs but a few fraction of events (5/93) are only related with CMEs. In this study, we carefully identified the sources of these events. For this, we used LASCO CME catalog and SOHO MDI data. First, we examined the directions of CMEs related with the events and the CMEs are found to eject from the western hemisphere. Second, we searched a major active region in the front solar disk for several days before the proton events occurred by taking into account two facts: (1) The location of the active region is consistent with the position angle of a given CME and (2) there were several flares in the active region or the active region is the largest among several candidates. As a result, we were able to determine active regions which are likely to produce proton events without ambiguity as well as their longitudes at the time of proton events by considering solar rotation rate, $13.2^{\circ}$ per day. From this study, we found that the longitudes of five active regions are all between $90^{\circ}W$ and $120^{\circ}W$. When the flare peak time is assume to be the CME event time, we confirmed that the dependence of their rise times (proton peak time - flare peak time) on longitude are consistent with the previous empirical formula. These results imply that five events should be also associated with flares which were not observed because they occurred from back-side.

  • PDF

Dependence of solar proton events on X-ray flare peak flux, longitude, and impulsive time

  • Park, Jin-Hye;Moon, Yong-Jae;Lee, Dong-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.37.2-37.2
    • /
    • 2009
  • In this study, we present a new empirical forecasting method of solar proton events based on flare parameters. For this we used NOAA solar energetic particle (SEP) events from 1976 to 2006 and their associated X-ray flare data. As a result, we found that about only 3.5% (1.9% for M-class and 21.3% for X-class) of the flares are associated with the proton events. It is also found that this fraction strongly depends on longitude; for example, the fraction for $30W^{\circ}$ < L < $90W^{\circ}$ is about three times larger than that for $30^{\circ}E$ < L < $90^{\circ}E$. The occurrence probability of solar proton events for flares with long duration (> 0.3 hours) is about 2 (X-class flare) to 7 (M-class flare) times larger than that for flares with short duration (< 0.3 hours). The relationship between X-ray flare peak flux and proton peak flux as well as its correlation coefficient are strongly dependent on longitude. Using these results for prediction of proton flux, we divided the data into 6 subgroups depending on two parameters: (1) 3 longitude ranges (east, center, and west) and (2) flare impulsive times (long and short). For each subgroup, we make a linear regression between the X-ray flare peak flux and the corresponding proton peak flux. The result shows that the proton flux in the eastern region is much better correlated with the X-ray flux than that in the western region.

  • PDF

FORECAST OF DAILY MAJOR FLARE PROBABILITY USING RELATIONSHIPS BETWEEN VECTOR MAGNETIC PROPERTIES AND FLARING RATES

  • Lim, Daye;Moon, Yong-Jae;Park, Jongyeob;Park, Eunsu;Lee, Kangjin;Lee, Jin-Yi;Jang, Soojeong
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.4
    • /
    • pp.133-144
    • /
    • 2019
  • We develop forecast models of daily probabilities of major flares (M- and X-class) based on empirical relationships between photospheric magnetic parameters and daily flaring rates from May 2010 to April 2018. In this study, we consider ten magnetic parameters characterizing size, distribution, and non-potentiality of vector magnetic fields from Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) and Geostationary Operational Environmental Satellites (GOES) X-ray flare data. The magnetic parameters are classified into three types: the total unsigned parameters, the total signed parameters, and the mean parameters. We divide the data into two sets chronologically: 70% for training and 30% for testing. The empirical relationships between the parameters and flaring rates are used to predict flare occurrence probabilities for a given magnetic parameter value. Major results of this study are as follows. First, major flare occurrence rates are well correlated with ten parameters having correlation coefficients above 0.85. Second, logarithmic values of flaring rates are well approximated by linear equations. Third, using total unsigned and signed parameters achieved better performance for predicting flares than the mean parameters in terms of verification measures of probabilistic and converted binary forecasts. We conclude that the total quantity of non-potentiality of magnetic fields is crucial for flare forecasting among the magnetic parameters considered in this study. When this model is applied for operational use, it can be used using the data of 21:00 TAI with a slight underestimation of 2-6.3%.

Relative Contribution from Short-term to Long-term Flaring rate to Predicting Major Flares

  • Lim, Daye;Moon, Yong-Jae;Park, Eunsu;Park, Jongyeob;Lee, Kangjin;Lee, Jin-Yi;Jang, Soojeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.52.3-52.3
    • /
    • 2019
  • We investigate a relative contribution from short to long-term flaring rate to predicting M and X-class flare probabilities. In this study, we consider magnetic parameters summarizing distribution and non-potentiality by Solar Dynamics Observatory/Helioseimic and Magnetic Imager and flare list by Geostationary Operational Environmental Satellites. A short-term rate is the number of major flares that occurred in an given active region (AR) within one day before the prediction time. A mid-term rate is a mean flaring rate from the AR appearance day to one day before the prediction time. A long-term rate is a rate determined from a relationship between magnetic parameter values of ARs and their flaring rates from 2010 May to 2015 April. In our model, the predicted rate is given by the combination of weighted three rates satisfying that their sum of the weights is 1. We calculate Brier skill scores (BSSs) for investigating weights of three terms giving the best prediction performance using ARs from 2015 April to 2018 April. The BSS (0.22) of the model with only long-term is higher than that with only short-term or mid-term. When short or mid-term are considered additionally, the BSSs are improved. Our model has the best performance (BSS = 0.29) when all three terms are considered, and their relative contribution from short to long-term rate are 19%, 23%, and 58%, respectively. This model seems to be more effective when predicting active solar ARs having several major flares.

  • PDF