• Title/Summary/Keyword: flammable materials

Search Result 134, Processing Time 0.02 seconds

Estimation of the Lower Explosion Limits Using the Normal Boiling Points and the Flash Points for the Ester Compounds (에스테르화합물에 대한 표준끓는점과 인화점을 이용한 폭발하한계 추산)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.84-89
    • /
    • 2007
  • The lower explosion limit(LEL) is one of the major combustion properties used to determine the fire and explosion hazards of the combustible substances. In this study, the lower explosion limits of the ester compounds were predicted by using the normal boiling points and the flash points based on the liquid thermodynamic theory. As a results, the A.A.P.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated the LEL for the ester are 8.80 vol% and 0.18 vol%, respectively and the coefficient of correlation was 0.965. From a given results, by the use of the proposed methodology, it is possible to predict the lower explosion limits of the other flammable materials.

The Study of the Compatibility of MSDS for the Classification of Flammable Materials (위험물의 분류를 위한 MSDS 이용의 적정성 연구)

  • Kwon, Kyung-Ok
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.56-60
    • /
    • 2007
  • The usage of MSDS (Material Safety Data Sheet) is increased world widely for the implementation of GHS and REACH. In order to know the accuracy of the data in MSDS the flash point of n-Decanol was measured by using a Tag closed tester, a Seta-flash closed tester, a Pensky-Martens closed tester and a Cleveland open tester in Japan and Korea, respectively. The test results of flash points of n-Decanol purchased different manufacturer were compared to the data of the references and MSDS. The flash points determined in Japan were similar to those in Korea but have shown much difference from those in MSDS and literatures. It is suggested that the results of flash points determined in this research have validity and manufacturers should be more careful when they make MSDS as well as for the classification of GHS and REACH.

A Study on Explosion Risk Management for Hot Oil Heater (열매체 가열기 설비에서의 폭발위험관리에 관한 연구)

  • Jang, Chul;Kwon, Jin-Wook;Hwang, Myoung-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • In the industrial field, various type of fuel have been used for product processing facilities. Recent for 10 years, the usage of natural gas (NG) was gradually increased. Because it has many merits; clean fuel, no transportation, storage facility and so on. There are common safety concept that strict explosion protection approaches are needed for facilities where explosive materials such as flammable liquid, vapor and gases exist. But some has an optimistic point of view that the lighter than air gases such as NG disperse rapidly, hence do not form explosion environment upon release into the atmosphere, many parts has a conventional safety point of view that those gases are also inflammable gases, hence can form explosion environment although the extent is limited and present. In this paper, the heating equipments (Hot Oil Heater) was reviewed and some risk management measures were proposed. These measures include hazardous area classification and explosion-proof provisions of electric apparatus, an early gas leak detection and isolation, ventilation system reliability, emergency response plan and training and so on. This study calculates Hazardous Area Classification using the hypothetical volume in the KS C IEC code.

A Study on the Improvement of Classification of Explosion Hazardous Area using Hypothetic Volume through Release Characteristic (누출특성을 통한 폭발위험장소 선정방법의 개선에 대한 연구)

  • Kim, Dae-Yeon;Chon, Young-Woo;Lee, Ik-Mo;Hwang, Yong-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.2
    • /
    • pp.31-39
    • /
    • 2017
  • Classify of explosion hazardous areas must be made at the site where flammable materials are used. This reason is that it is necessary to manage ignition sources in of explosion hazardous areas in order to reduce the risk of explosion. If such an explosion hazard area is widened, it becomes difficult to increase the number of ignition sources to be managed. The method using the virtual volume currently used is much wider than the result using CFD(Computational Fluid Dynamics). Therefore, we tried to improve the current method to compare with the new method using leakage characteristics. The result is a realistic explosion hazard if the light gas is calibrated to the mass and the heavy gas is calibrated to the lower explosion limit. However, it is considered that the safety factors should be taken into account in the calculated correction formula because such a problem should be considered as a buffer for safety.

A Study on the Risk of Organic Solvents for Underground Area under Construction Site through a Fire Accident Case (화재사고사례를 통해서 본 건설현장 지하공간에서의 유기용제의 위험성에 대한 연구)

  • Ahn, Byung-Joon;Jung, Ki-Hyuk;Lee, Jung-Suk;Rhim, Jong-Kuk
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • In the consideration of the working conditions, which have several kinds of works operating at the same time, at construction sites, it is difficult to prevent industrial accidents. There are a number of works to employ flammable materials and hot works simultaneously operated without fire protection systems. It causes a huge fire and casualties. In this research to analyze an accident case, the reasonable prevention methods are suggested throughout the property tests for the organic solvents and the analysis of the behavior for vapour cloud in the underground area of the construction site.

A Study on Minimum Ignition Energy by Controlled Discharge Energy (방전에너지 제어에 의한 최소점화에너지의 고찰)

  • Choi, Sang-Won;Ohsawa, Atsushi
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.36-39
    • /
    • 2007
  • It is important to know Minimum Ignition Energy(MIE) of flammable materials for ignition hazard of chemical processes etc.. Currently a capacitor discharge is used mainly to measure the MIE. Then, it is impossible to control actively discharge energies and discharge time because the MIE measurement uses a high voltage capacitor and fixed capacitor. However, the control of discharge energy and discharge time will be convenient if self-sustain discharge is used. In this paper, we measured the MIE by self-sustain discharge of a pulse shape to propose the new measuring method of the MIE. AS a result, ignition energies are increased gradually as discharge duration time gets longer, and discharge current grows larger. Also, an arc discharge and a glow discharge occurred during the experimental period, and the ignition by glow discharges happened when discharge duration time was $90{\mu}s$, discharge current was 8A and 1A Especially, the MIE occurred the 0.05mm and 0.08mm of the gap distance between discharge electrode in the same discharge duration time.

Seismic protection of LNG tanks with reliability based optimally designed combined rubber isolator and friction damper

  • Khansefid, Ali;Maghsoudi-Barmi, Ali;Khaloo, Alireza
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.523-532
    • /
    • 2019
  • Different types of gas reservoir such as Liquid Natural Gas (LNG) are among the strategic infrastructures, and have great importance for any government or their private owners. To keep the tank and its contents safe during earthquakes especially if the contents are of hazardous or flammable materials; using seismic protection systems such as base isolator can be considered as an effective solution. However, the major deficiency of this system can be the large deformation in the isolation level which may lead to the failure of bearing system. In this paper, as a solution, the efficacy of an optimally designed combined vibration control system, the combined laminated rubber isolator and rotational friction damper, is investigated to evaluate the enhancement of an existing metal tank response under both far- and near-field earthquakes. Responses like impulsive and convective accelerations, base shear, and sloshing height are studied herein. The probabilistic framework is used to consider the uncertainties in the structural modeling, as well as record-to-record variability. Due to the high calculation cost of probabilistic methods, a simplified structural model is used. By using the Mont-Carlo simulation approach, it is revealed that this combined isolation system is a highly reliable system which provides considerable enhancement in the performance of reservoir, not only leads to the reduction of probability of catastrophic failure of the tank but also decrease the reservoir damage during the earthquake. Moreover, the relative displacement of the isolation level is controlled very well by this combined system.

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

An Experimental Study on the Influence of the Spread of Firebrand on Building Exterior Materials and Roofing Materials in Urban Areas (도심지 인접 산불의 불티 확산이 건축물 외장재와 지붕재에 미치는 영향에 관한 실험적 연구)

  • Min, Jeong-Ki
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.617-626
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the fire srpead risk of building exterior and roofing materials due to the firebrand of forest fire occurring in the urban areas. Method: In order to achieve this research purpose, by selecting building materials used for exterior and roofing materials of buildings, the time to ignition, total heat release, and heat release rate were investigated, and a forest fire firebrand system was established to the possibility of fire spread was confirmed. Result: As a result of the cone calorimeter test, the roofing material had a similar or faster ignition time due to radiant heat compared to the exterior material with the steel plate exposed to the outside, and showed a higher heat release rate and total heat release than the exterior material. Although it was affected by the flammable material, it was confirmed that it did not spread easily due to the limited amount of combustible material, and carbonization marks appeared inside. Conclusion: The cone calorimeter test method has been shown to be useful in understanding the combustion characteristics of building materials by radiant heat, but the fire spread due to a firebrand in a forest fire is directly affected by the flame due to the ignition of surrounding combustibles, so finding a direct correlation with the cone calorimeter method is difficult. It is judged that the roof material may be more vulnerable to the spread of fire due to the fire than the exterior material.

A Study of Establishment of the Infrastructure for Consequence Analysis of Metallic Dust Explosion (금속성 분진폭발의 영향 분석을 위한 기반구축에 관한 연구)

  • Jang, Chang Bong;Lee, Kyung Jin;Moon, Myong Hwan;Baek, Ju Hong;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.84-91
    • /
    • 2017
  • Recent years have witnessed the increased usage of flammable metals, such as aluminum or magnesium, in wide range of high-tech industries. These metals are indispensable for the improvement of physical properties of materials as well as the design capability of the final product. During the process, unwanted metal dusts could be released to the environment. This can lead to an occupational health and safety issues. Due to their flammable nature, more serious problem of an explosion can happen in extreme cases. The explosion is the combustion of tiny solid particles and vapor mixture, caused by pyrolysis. This complex composition makes engineering analysis more difficult, compared to simple gas explosions or vapor cloud combustions. The study was conducted to assess this light metal dust explosion in an effort to provide the bases for a risk assessment. Dust explosion characteristics of each material was carefully evaluated and an appropriate analysis tool was developed. A comprehensive database was also constructed and utilized for the calibration of the developed response model and the verification for its accuracy. Subsequently, guidelines were provided to prevent dust explosions that could occur in top-notch industrial processes.