• Title/Summary/Keyword: flame temperature

Search Result 1,300, Processing Time 0.029 seconds

Characteristics of Methane Turbulent Lifted Flames in Coflow Jets with Initial Temperature Variation (초기 온도 변화를 갖는 동축류 제트에서 메탄 난류 부상화염의 특성)

  • Choi, Byung-Chul;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.970-976
    • /
    • 2008
  • Characteristics of methane turbulent non-premixed flame have been studied experimentally in coflow jets with initial temperature variation. The results showed that the premixed flame model and the large-scale mixing model for turbulent flame stabilization were effective for methane fuel considered initial temperature variation. Especially, the premixed flame model has been improved by considering nitrogen dilution for the liftoff height of turbulent lifted flame. In estimating blowout velocity and the liftoff height at blowout with the premixed flame model and the large-scale mixing model, the two turbulent models were excellently correlated by considering the effect of physical properties and buoyancy for the initial temperature variation.

An Experimental Study on the Lift-off Characteristics of the Triple Flame with Concentration Gradient (농도구배가 삼지화염의 부상특성에 미치는 영향에 관한 실험적 연구)

  • Seo, Jeong-Il;Kim, Nam-Il;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.7-14
    • /
    • 2004
  • The lift-off characteristics of the triple flame have been studied experimentally with various mean velocities and concentration gradients using a multi-slot burner, which can control the concentration gradient and the mean velocity independently, Lift-off height, axial maximum velocity, flame temperature, and some other characteristics were examined for methane and propane flame, It was found that minimum values of the lift-off heights exist at a certain concentration gradient for constant mean velocity, and this result implies that the propagation velocity has a maximum value at this condition, OH radical distribution was measured with LIF method and velocity variation along streamline was measured with PlV system. In addition maximum temperature along streamline was measured with CARS system. The intensity of the diffusion flame affects on the propagation velocity of triple flame in the region of very weak concentration gradient.

  • PDF

A Study on a Technique of the Measurement of Flame Temperature and Soot Using the Two-color Method in Diesel Engines (디젤엔진에서 이색법을 이용한 화염온도와 Soot의 계측기술에 관한 연구)

  • Lee, Tae-Won;Lee, Seon-Bong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.3007-3014
    • /
    • 1996
  • The instantaneous flame temperature and soot formation and oxidation in a D.I. diesel engine are measured using a two-color method. The proposed method based on the continuous spectral radiation from the soot particles in the flame is applicable to industrial diesel engines without major modifications of their main characteristics. Measurements are performed at one location inside the combustion chamber of a D.I. diesel engine. Effects of different engine speeds and loads on flame temperature and KL factor which is an index of soot concentration were examined. Little temperature change were observed with increasing rpm, while increased with loads. The higher the flame temperature is, the lower the KL factor is.

SiC filament Pyrometry in Near Extinction Diffusion Flame (SiC 필라멘트를 이용한 소염 직전의 확산화염 온도 계측)

  • Shim, Sung-Hoon;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1481-1487
    • /
    • 2002
  • The thin SiC filament technique has been employed to identify the possibility of measuring flame temperature, and especially unstable near-extinction flame temperature in an oxidizer deficient ambience, by comparing the relative visible (non-IR) luminosities of SiC filaments with thermocouple measured temperature in co-flowing, laminar propane/air diffusion flames. The results show good agreement between the digitized relative visible luminosity profiles of the SiC filaments and temperature profiles measured using a thermocouple at temperatures above $700^{\circ}C$, although, a non-linear calibration is probably required far the whole temperature range. The highest radial peak temperature exists near to the nozzle exit. and the centerline temperatures were virtually unchanged with increasing flame height in an oxidizer deficient near-extinction flame.

A Study on the Co-flow Diffusion Flame Temperature Measurement at Various Fuel Flows Rate Using the Rapid Insertion Technique (급속삽입법을 이용한 연료 유량에 따른 동축류 확산화염에서의 온도 측정에 관한 연구)

  • Han Yongtaek;Lee Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.51-59
    • /
    • 2005
  • Co-flow laminar diffusion flames' temperature has been studied experimentally for ethylene$(C_2H_4)$ using a co-flow burner in order to investigate the characteristics of diffusion flame's temperature distribution. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple. The measurement area was divided into three zones. 1st area was expect to created PAH zone, Il nd area was expect to form soot zone, which is known to generate most soot volume fraction, and III rd area was expect to from soot oxidization zone. Also The temperature along the flame y-axis as a fuel quantity was measured. As a results, we have measured temperature neglecting the effect of soot particles attached to the thermocouple junction, which is close to the nozzle and upstream zone has a unstable flow in co-flow diffusion flame and acquires that the flame y-axis temperature has a uniform temperature in the generated soot volume fraction zone(II nd).

A Study on the Flame Structure and Combustion Charactexistics of a Premixed Flame Stabilized by a Streamline Step( $\Pi$) (유선형 스텝에 의해 안정화된 예혼합화염의 구조와 연소특성에 관한 연구 ($\Pi$))

  • 이재득;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1661-1668
    • /
    • 1990
  • In a turbulent premixed flame stabilized by the streamline step, and dominated by a coherent eddy, a flame micro-structure was investigated with analyzing the signals of temperature, the ion current, and schieren phtographs simultaneously. Generally the contours of large scale coherent eddies of schlieren photographs was considered as the flame front, however, the main reaction can be occurred within the eddy as a structure of fine flamelets scale. The surrounding burned gas of flamelets could not propagate to a unburned mixture, obstructing flamelets from propagating to a unburned mixture. Consequently, it could restrain flashback. The main reaction region was found to be located at higher temperature of the burned gas rather than at maximum rms of fluctuating temperature. The peak probability of higher temperature was 6 times greater than that of lower temperature. As it was difficult to infer a flame structure from PDF distribution of the fluctuating temperature in form of bimodal shape, it should be taken into consideration with other informations related to the sensitive flame front, for instance, ion current.

Preheated Air Combustion Characteristics of Partially Premixed Flame (부분 예혼합 화염의 예열공기 연소특성)

  • Lee, Seung-Young;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.65-70
    • /
    • 2001
  • OH radical and NOx have been measured in a methane-air partially premixed flame using PLIF technique to define preheated air combustion characteristics. The temperature of mixture is determined by 300K, 400K, 600K and 800K below the auto-ignition temperature respectively. Flame height increases as equivalence ratio increased. As initial enthalpy is supplied, the radius of flame was increased and much amount of yellow flame in rich equivalence ratio was observed. This is due to the faster burning velocity. Also initial oxidization begins earlier as the initial temperature of mixture increased. It means that height of premixed flame front decreased. This phenomenon can be observed OH PLIF image. The qualitative analysis of OH concentration in the PLIF image shows that overall OH concentration increases with equivalence ratio and the initial temperature of mixture increased. At the preheating temperature goes up, axial gradient of OH concentration is less steep than that of lower temperature condition. This may identify that combustion reacts continuously, so preheated air combustion can evade the local heating and make high temperature indiscriminately in the overall reaction zone.

  • PDF

The Experimental study on the Flame Propagation Process of a Constant Volume Combustion Chamber (정적 연소실내에서 화염 전파 과정에 대한 실험적 연구)

  • Kim, Chun-Jung;Kang, Kyung-Koo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.121-130
    • /
    • 1999
  • It is necessary to measure pressure, temperature, chemical equilibrium and the shape of flame in order to understand the combustion process in a combustion chamber. In particular, the flame formulation and combustion process of divided combustion chamber are different from those of a single chamber, And the variable diameter of a jet hole can effect not only physical properties like ejection velocity, temperature and time of combustion but also a chemical property like the reaction mechanism. Accordingly temperature is one of the most important factors which influence the combustion mechanism. This paper observed shape of flame by using the schlieren photographs and measured the pressure in a combustion chamber and the reaching time of the flame by ion probe By doing these, we investigation the formulation of the flame and the process of propagation. These measurement methods can be advanced in understanding the combustion process and process and propagation of flame.

  • PDF

Study on the Internal Temperature of Flame Resistant Treated Wood Exposed to a Standard Fire (표준화재에 노출된 방염처리 목재의 내부온도에 관한 연구)

  • Kim, Hwang-Jin
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.14-18
    • /
    • 2018
  • The earlier studies on the fire resistance performance of woods used as building materials have focused on confirming combustion characteristics of fire retardant or flame resistant treated wood. In this paper, to confirm internal temperature changes closely related to pyrolysis of woods exposed to the flame, heating experiments were conducted in a heating furnace according to the standard heating temperature curves after Douglas-fir, which is widely used as structural materials, was treated with a flame resistant solution and flame retardant paint. As a result of the experiment, it was confirmed that the thermal diffusion inside the wood has decreased when the wood was treated with the flame resistant solution. However, in high temperature, the flame resistant effect could not be expected due to the peeling of the coating in the case of the flame resistant paint treated wood. Therefore, it can be considered that it is more effective to use the flame resistant solution which penetrates in to the inside of the wood than flame resistant paint which forms the coating on the surface of the wood in order to enhance the flame resistance effect on the thick wood.

Characteristics of Methane Turbulent Lifted Flames in Coflow Jets with Initial Temperature Variation (동축류 제트에서 초기 온도 변화에 따른 메탄 난류 부상화염 특성)

  • Choi, Byung-Chul;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2372-2377
    • /
    • 2007
  • Characteristics of turbulent lifted flames in coflow jets with the varying initial temperature have recently been investigated about only propane case diluted by nitrogen. The investigation has firstly improved a premixed flame model and a large scale mixing model among competing theories on the stabilization mechanism of turbulent flame to be suitable for a high temperature condition. In this research, about methane with good availability to apply for a practical combustor as clean fuel, its characteristics of turbulent nonpremixed flame have been studied experimentally. The results have shown an effectiveness of the premixed flame model and the large scale mixing model considered initial temperature variation. Additionally, considering the axial distance where the mean fuel concentration falls below the stoichiometric level along the center line of the jet according to diluting nitrogen, the premixed flame model have more accurately been improved.

  • PDF