• Title/Summary/Keyword: flake particle

Search Result 40, Processing Time 0.028 seconds

Effect of Mechanical Milling Parameters on the Particle Size of Silver Flake (은 플레이크 분말의 입자크기에 미치는 기계적 밀링 공정변수의 영향)

  • Lee, Gil-Geun;Jeong, Hae-Young
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.307-312
    • /
    • 2014
  • This study is focused on investigating the relation between the particle size of silver flake powder and mechanical milling parameters. Mechanical milling parameters such as ball size, impeller rotation speed and milling time of the attrition ball-mill were controlled to produce silver flake powder. The particle size of the silver flake powder increased with increasing ball size and impeller rotation speed. The change of the particle size of the silver flake powder with mechanical milling parameters was analyzed based on balls motion in the mill container of the attrition ball-mill. The silver flake particles were formed at the elastic deformation area of the ball due to the collision between balls. The change of the particle size of the silver flake powder with mechanical milling parameters well consists with the change of the collision energy of ball with parameters mentioned above.

Fabrication of Silver Flake Powder by the Mechanical Milling Process (기계적 밀링공정에 의한 은 플레이크 분말 제조)

  • Jeong, Hae-Young;Lee, Gil-Geun
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • This study focuses on fabricating silver flake powder by a mechanical milling process and investigating the formation of flake-shaped particles during milling. The silver flake powder is fabricated by varying the mechanical milling parameters such as the amount of powder, ball size, impeller rotation speed, and milling time of the attrition ballmill. The particle size of the silver flake powder decreases with increasing amount of powder; however, it increases with increasing impeller rotation speed. The change in the particle size of the silver flake powder is analyzed based on elastic collision between the balls, taking energy loss of the balls due to the powder into consideration. The change in the particle size of the silver flake powder with mechanical milling parameters is consistent with the change in the diameter of the elastic deformation contact area of the ball, due to the collision between the balls, with milling parameters. The flake-shaped silver particles are formed at the elastic deformation contact area of the ball due to the collision.

Efficient Learning Representation of Fire-Flake Particle Generation with Linear Regression (불똥 입자 생성을 효율적으로 학습 표현하기 위한 선형 회귀)

  • Kim, Sumi;Kim, Donghui;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.615-616
    • /
    • 2022
  • 본 논문에서는 간단한 선형 회귀를 이용하여 복잡한 불 시뮬레이션(Fire simulation)에서 표현되는 불똥 입자(Fire-flake particle)을 효율적으로 생성할 수 있는 방법을 제안한다. 일반적으로 불 시뮬레이션에서 불꽃은 격자기반으로 표현하고, 불똥은 입자로 표현하는 입자-격자 하이브리드 시스템을 이용한다. 이러한 방식을 그대로 인공신경망에 사용을 하게 되면 상대적으로 메모리가 많이 필요하며 계산양도 증가된다. 특히, 불똥 입자가 존재하지 않는 부분에서도 격자 공간에 대한 메모리를 할당해야 되기 때문에 고해상도 불똥 효과를 학습하는데 있어서 많은 문제점을 가지고 있다. 이러한 문제를 완화하기 위해 본 논문에서는 격자 단위가 아닌, 입자 단위로 불똥 입자 생성을 학습할 수 있는 방법을 제안한다.

  • PDF

Influence of Precursor on the Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2 Cathode for the Lithium Secondary Battery (전구체의 물성에 따른 리튬 2차전지용 Li(Ni0.5Co0.2Mn0.3)O2의 전기화학적 특성 변화)

  • Kang, Donghyun;Arailym, Nurpeissova;Chae, Jeong Eun;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.191-197
    • /
    • 2013
  • The one of the cathode material, $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$, was synthesized by the precursor, $Ni_{0.5}Co_{0.2}Mn_{0.3}(OH)_2$, from the co-precipitation method and the morphologies of the primary particle of precursors were flake and needle-shape by controlling the precipitation parameters. Identical powder properties, such as particle size, tap density, chemical composition, were obtained by same process of lithiation and heat-treatment. The relation between electrochemical performances of $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ and the primary particle morphology of precursors was analyzed by SEM, XRD and EELS. In the $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ cathode from the needle-shape precursor, the primary particle size was smaller than that from flake-shape precursor and high Li concentration at grain edge comparing grain center. The cycle and rate performances of the cathode from needle-shape precursor shows superior to those from flake-shape precursor, which might be attributed to low charge-transfer resistance by impedance measurement.

An Artificial Neural Network for Efficiently Learning and Representation the Advection and Remove of Fire-Flake Particles (불똥 입자의 이류과 삭제를 효율적으로 학습 표현하는 인공신경망)

  • Kim, Donghui;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.345-348
    • /
    • 2022
  • 본 논문에서는 유체 시뮬레이션(Fluid simulation)중 화염에서 표현되는 불똥 입자(Fire-flake particle)의 생성, 움직임과 삭제를 효율적으로 학습하고 표현할 수 있는 인공지능 기법에 대해 소개한다. 유체 시뮬레이션을 계산하기 위해서는 일반적으로 수치해석학과 같은 학문의 이해가 필요하며 불똥이나 거품과 같은 유체의 2차 효과(Secondary effect)는 기반유체(Underlying fluids)를 통해 추출되기 때문에 복잡하고 계산양이 많아진다. 이러한 문제를 완화하고자 본 논문에서는 인공신경망을 이용한 분류 모델 학습을 통해 격자 내에서 표현되어야 하는 불똥 입자의 생성을 학습하고, 다항 회귀 모델 학습을 통해 불똥 입자의 움직임을 예측한다. 또한, 불똥 입자가 삭제되어야하는 상태를 네트워크 학습을 통해 얻어내며, 수명(Lifespan) 임계값 조절하여 다양한 장면에서 불똥을 제어할 수 있다. 결과적으로 화염의 움직임을 기반으로 불똥의 움직임을 복잡한 수학식이나 디자이너에게 의존하지 않고 인공지능 학습을 통해 쉽게 제어하고 예측하는 결과를 보여준다.

  • PDF

Optimization of Manufacturing Condition for Fried Garlic Flake and the Physicochemical Properties (튀긴 마늘 flake 제조조건의 최적화 및 이화학적 특성)

  • Kim, Kyeong-Yee;Lee, Eun-Kyung
    • Korean journal of food and cookery science
    • /
    • v.28 no.6
    • /
    • pp.805-811
    • /
    • 2012
  • This study was carried out in order to optimize the manufacturing condition of fried garlic flakes as well as to investigate the physicochemical properties of the flakes. Fried garlic flake samples were prepared as follows: garlic was sliced by a thickness of 1.5 mm, 2.0 mm, 2.5 mm, which were measured by a thickness gage. The samples were fried in vegetable oil under different temperatures of $140{\sim}150^{\circ}C$, $160{\sim}170^{\circ}C$ and $180{\sim}185^{\circ}C$. The compression strength depending on the height (h) was measured in order to find the thickness effect by the rheometer (force control: 50 N, h: 3.25 mm). Moreover, the sample with 1.5 mm thickness showed crisp phenomena of the split compared with the crush shape of the 2.0 mm and 2.5 mm thick samples. The result of strength for time dependence showed a sample with a thickness of 1.5 mm, which was measured 5~9 times more than the 2.0 mm and 2.5 mm thick samples. We thought the reason that the 1.5 mm sample had less response power equivalent to compression force than the other samples. Alliin has been found to affect the immune responses in the blood, it is a derivative of the amino acid cysteine and is also quite heat stable. The LC system with a UV detection at 210 nm consists of a separation on a Zorbax TMS column and isocratic elution with water and ACN as a mobile phase. The alliin contents of raw and fried garlic flake under $140{\sim}150^{\circ}C$, $160{\sim}170^{\circ}C$ and $180{\sim}185^{\circ}C$ were 18.10 mg/mL, 14.0 mg/mL, 11.6 mg/mL and 11.1 mg/mL, respectively. The decrement of alliin content under different temperature was a small quantity hence, we confirmed that the increasing manufacturing temperature was not affected by the alliin content. Examining for the particle structure of fried garlic flakes by a polarization microscope, the color of the sample treated at $160{\sim}170^{\circ}C$ was pure yellow. Furder, the fiber shaped particle, which has an effect on the tough texture, almost did not appear compared to the different temperature conditions. Finally, the sensory test for the preference of fried garlic flake under different conditions was carried out and the scores for various sensory characteristics were surveyed. According to the physicochemical measurements and sensory evaluation, we confirmed that the optimum manufacturing condition of fried garlic flake was 1.5 mm thick at a temperature of $160{\sim}170^{\circ}C$.

Development of Pearl Pigment which Has the Similar Properties of Snow in Make-up Products (눈의 물리적인 특성과 유사한 펄 원료 개발 및 이를 이용한 화장료 조성물 제조방법)

  • Lee, Yun-Ha;Kim, Kyung-Nam;Sunwoo, Gun;Rick, Norbert;Reichnek, Antje;Choi, Yeong-Jin;Ko, Seung-Yong;Han, Sang-Hun;Kang, Hak-Hee;Lee, Ok-Sub
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-173
    • /
    • 2008
  • Pearlescent pigments have been widely used in cosmetic applications. Up to date; the most widely used pearl effect pigment is the mica-based pigment, which uses natural mica as the substrate that is in turn coated with metal of oxide interference layer. However, when natural mica is employed as a base material the final product often has a yellowish color, mainly due to the fact that natural mica contains low levels of iron as an impurity[1,2]. This study was focused on developing a pearl pigment which might have a similar sparkling effect as snow. This effect was found to be due to its structure and purity, and this concept was also applied to development of our pearl pigments. More specifically, this invented pearl effect pigments are the mixture of glass-flake and glass-flake coated metal oxides and present the optical properties of snow matrix such as refractive index and particle size, unlike only the glass-flake or glass-flake coated metal oxides to be applied in. Using base material having similar physical properties (refractive index and particle size) as snow matrix as platelet for pearl effect pigments, these invented pigments present a three-dimensional glittering effect of the snow matrix. With this invented figments an applied; we achieved the beauty of snow crystal from makeup products containing these pigments.

Stretchable Electrode Properties Study According to Particle Size of Flake-type Ag Powders (Flake-type Ag분말의 입자크기에 따른 신축성 전극 특성 연구)

  • Nam, Hyun Min;Sea, Min Ho;Nam, Su Yong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.35-40
    • /
    • 2022
  • In this study, the average particle size of silver powder was 2㎛, 7㎛, and a mixture of these (50:50wt%), three kinds of silver pastes were prepared. In addition, as a result of examining the viscosity and viscoelasticity of the three silver pastes, TGA measurement, resistance change according to strain, and change in surface structure of the electrode, the following conclusions were obtained. Summarizing these results, it was found that it is most desirable to have a particle size of about 2㎛ in order to minimize the change in resistance due to strain.

A Control Algorithm for Wafer Edge Exposure Process

  • Park, Hong-Lae;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.55.4-55
    • /
    • 2002
  • In the semiconductor fabrication, particle contamination is wide-spread and one of major causes to yield loss. Extensive testing has revealed that even careful handling of wafers during processing may cause photo-resist materials to flake off wafer edges. So, to remove the photo-resist at the outer 5mm of wafers, UV(Ultraviolet) rays are exposed. WEE (Wafer Edge Exposure) process station is the system that exposes the wafer edge as prespecified by controlling the positioning mechanism and maintaining the light intensity level In this work, WEE process station has been designed so as to significantly lower the amount of particle contamination which occurs even during the most r...

  • PDF

Anti-corrosive Effects of Multi-Walled Carbon Nano Tube and Zinc Particle Shapes on Zinc Ethyl Silicate Coated Carbon Steel

  • Jang, JiMan;Shon, MinYoung;Kwak, SamTak
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Zinc ethyl silicate coatings containing multi walled carbon nanotubes (MWCNTs) were prepared, to which we added spherical and flake shaped zinc particles. The anti-corrosive effects of MWCNTs and zinc shapes on the zinc ethyl silicate coated carbon steel was examined, using electrochemical impedance spectroscopy and corrosion potential measurement. The results of EIS and corrosion potential measurement showed that the zinc ethyl silicate coated with flake shaped zinc particles and MWCNT showed lesser protection to corrosion. These outcomes were in agreement with previous results of corrosion potential and corrosion occurrence.