• Title/Summary/Keyword: fixture loading

Search Result 123, Processing Time 0.024 seconds

Mechanical Strength Experiment of Carbon/Carbon Composite for Aircraft Brake Disk (탄소/탄소 브레이크 디스크의 기계적 강도 시험에 관한 연구)

  • 유재석;오세희;김천곤;홍창선;윤병일;김광수
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.55-62
    • /
    • 2000
  • The strength test was done for the Carbon/Carbon rotor disk which is the critical part of a carbon/carbon brake system in an operating time. The loading fixture was designed for the static strength test of a single carbon/carbon brake disk using finite element analysis. To simulate the real dynamic system in a static condition, the friction surface of the rotor disk was fixed and static load was applied to the rotor slot in the circumferential direction. The described failure mechanism of the brake disk can be described as matrix cracking occurred first at the contact surface of the rotor slot, subsequent delamination from the cracked contact surface, and the final fracture at the notch of the rotor.

  • PDF

A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite (炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.198-207
    • /
    • 1986
  • This study investigates interlaminar fracture characteristics of Graphite/Epoxy composite (HFG Graphite/Epoxy) under mode I (opening mode), mode II (sliding mode) and mixed mode loading conditions. The effects on interlaminar fracture toughness due to different fiber orientations on the crack surface are also investigated. The antisymmetric test fixture proposed by M. Arcan is used for this test. Both critical stress intensity foctors and critical energy release rates were determined and several mixed mode fracture criteria were compared to the experimental data. Also fracture surfaces were investigaed to obtain informations on the fracture behaviors of Graphite/Epoxy composite by means of a scanning electron microscope(SEM).

Effect of fluid contamination on reverse torque values in implant-abutment connections under oral conditions

  • Mostafavi, Azam Sadat;Memarian, Maryam;Seddigh, Mohammad Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.65-70
    • /
    • 2021
  • Purpose. Implant mechanical complications, including screw loosening, can influence dental implant success. It has been shown that torque values are affected by contamination occurred in implant-abutment (I/A) interface. This study aimed to examine the effects of blood, saliva, fluoride and chlorhexidine contamination on reverse torque values (RTVs) of abutment screws in oral conditions. Materials and Methods. 50 fixtures were mounted into the stainless-steel holders and divided into five groups (n = 10). Except control group (NC), fixture screw holes in other groups were contaminated with chlorhexidine (CG), saliva (SG), blood (BG), or fluoride (FG). Abutment screws were tightened with a digital torque meter. I/A assemblies were subjected to thermocycling and cyclic loading. The mean RTVs were recorded and data were analyzed with one-way ANOVA and Tukey test. Results. Except for specimens in SG (20.56 ± 1.33), other specimens in BG (21.11 ± 1.54), CG (22.89 ± 1.1) and FG (24.00 ± 1.12) displayed significantly higher RTVs compared to NC (19.00 ± 1.87). The highest RTVs were detected in CG and FG. Conclusion. The obtained data robustly suggest that RTVs were significantly affected by fluid contaminations. Specimens in FG and CG displayed the highest RTVs. Therefore, clinicians should have enough knowledge about probable contaminations in I/A interface in order to manage them during clinical procedure and to inform patients about using oral care products.

Effect of core shape on debonding failure of composite sandwich panels with foam-filled corrugated core

  • Malekinejadbahabadi, Hossein;Farrokhabadi, Amin;Rahimi, Gholam H;Nazerigivi, Amin
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.467-482
    • /
    • 2022
  • One of the major failure modes in composite sandwich structures is the separation between skins and core. In this study, the effect of employing foam filled composite corrugated core on the skin/core debonding (resistance to separation between skin and core) is investigated both experimentally and numerically. To this aim, triangular corrugated core specimens are manufactured and compared with reference specimens only made of PVC foam core in terms of skin/core debonding under bending loading. The corrugated composite laminates are fabricated using the hand layup method. Also, the Vacuumed Infusion Process (VIP) is employed to join the skins to the core with greater quality. Utilizing an End Notched Shear (ENS) fixture, three point bending tests are performed on the manufactured sandwich composite panels. The results reveal that the resistance to separation capacity and flexural stiffness of sandwich composite has been increased about 170% and 76%, respectively by using a triangular corrugated core. The Cohesive Zone Model (CZM) with appropriate cohesive law in ABAQUS finite element software is used to model the progressive face/core interfaces debonding the difference between experimental and numerical results in predicting the maximum born load before the skin/core separation is about 6 % in simple core specimens and 3% in triangular corrugated core specimens.

A Prospective Clinical Trial on the Mg Oxidized Clinical Implants (마그네슘 양극산화 임플란트의 성공률에 관한 전향적 임상연구)

  • Im, So-Min;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra;Um, Heung-Sik;Lee, Jae-Kwan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.25-39
    • /
    • 2011
  • In animal studies, Magnesium (Mg) - incorporated oxidized implants showed significant enhancement of the bone response. This prospective clinical trial was performed to investigate the success rate, implant stability and marginal bone loss of Mg oxidized clinical implant. The experimental protocol was approved by Institutional Review Board of the Gangneung-Wonju National University Dental Hospital. Fifty healthy patients had partial edentulism were included in this study. Mg oxidized clinical implants (Implant M, Shinhung, Korea) were installed and restored with conventional protocol. The patients were recalled at 1, 3, 6 months after functional loading. Implant stability quotient (ISQ) was measured and periapical radiographic images were obtained. Amount of marginal bone loss was calculated with calibrated images from periapical radiographs. Repeated measured analysis of variance and post hoc Tukey test were used to compare the mean ISQ and bone level. A total of 101 implants were analyzed. The mean ISQ values increased continuously with time lapse from 68.4 at fixture installation to 71.5 at 6 months after loading. Implant stability was correlated with gender, fixture diameter, bone quality and implant sites. The mean marginal bone loss during 6 months after loading was 0.26 mm. There was no failed implant and six-month success rate was 100%. Within the limitations of this study, the six-month success rate of Mg oxidized implant was satisfactory. The implant stability and marginal bone level were excellent. However, further longer clinical studies will be needed to confirm the success of Mg oxidized clinical implant.

Screw Loosening of Various Implant Systems (수종의 임플랜트 시스템의 나사풀림에 관한 연구)

  • Ahn, Jin-Soo;Cho, In-Ho;Lim, Ju-Hwan;Lim, Heon-Song
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.2
    • /
    • pp.81-91
    • /
    • 2002
  • Dental implant systems have shown many post-surgical problems and One of the most frequent problem is screw loosening. To reduce screw loosening, a number of methods have been tried and recently fundamental modification of fixture-abutment connection structure was developed and used the most frequently. Former implant system structure, such as Br${\aa}$nemark, had external hex with the height of 0.7 mm and later, fixture with external hex of 1.0 mm height and internal hex structure were developed. In addition, the method of morse taper application was introduced to reduce screw loosening. In this study, the level of screw loosening of each implant systems was compared based on the vibration loosening measurement of abutment screw of each implant systems. Analysis of measured value was performed using 3 kinds of methods, (i) Percentage of average of initial 3 times loosening-torque value(initial loosening value) to tightening-torque of 30 Ncm, (ii) Percentage of loosening-torque value after 200 N strength loaded(experimental value) to initial loosening value and (iii) Percentage of experimental value to 30 Ncm of tightening-torque. Each result of analyses shows the value of initial loosening, loosening by repetitive load and final loosening level. The results of this study were as follows. (1) Percentage of initial loosening value to tightening-torque was increased in order of 0.7 mm external hex, 1.0 mm external hex, internal hex and internal taper and all values between each groups showed statistical significance (p<0.05). (2) Percentage of experimental value to initial loosening value was increased in order of internal hex, 0.7 mm external hex, 1.0 mm external hex and internal taper. Value of internal taper showed significant difference with that of 0.7 mm external hex and internal hex (p<0.05). (3) Percentage of experimental value to tightening torque was increased in order of 0.7 mm external hex, 1.0 mm external hex, internal hex and internal taper. Values of all groups showed statistical significance (p<0.05) except between the groups of 1.0 mm external hex and internal hex. Based on those results, there was no significant difference of loosening-torque by repetitive loading except internal taper. It is supposed that implant system with high resistant capability against initial loosening could be recommended for clinical use. In addition, in case of single implant restoration, 1.0 mm external hex or internal hex could be recommended rather than 0.7 mm external hex, and the use of internal taper would be the most useful way to reduce screw loosening.

Stress distribution of implants with external and internal connection design: a 3-D finite element analysis (내측 연결 및 외측 연결 방식으로 설계된 임플란트의 3차원적 유한요소 응력 분석)

  • Chung, Hyunju;Yang, Sung-Pyo;Park, Jae-Ho;Park, Chan;Shin, Jin-Ho;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.189-198
    • /
    • 2017
  • Purpose: This study aims to analyze the stress distribution of mandibular molar restoration supported by the implants with external hex and internal taper abutment connection design. Materials and Methods: Models of external connection (EXHEX) and internal connection (INCON) implants, corresponding abutment/crowns, and screws were developed. Supporting edentulous mandibular bony structures were designed. All the components were assembled and a finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. A total of 120 N static force was applied both by axial (L1) and oblique (L2) direction. Results: Peak von Mises stresses produced in the implants by L2 load produced 6 - 15 times greater than those by L1 load. The INCON model showed 2.2 times greater total amount of crown cusp deflection than the EXHEX model. Fastening screw in EXHEX model and upside margin of implant fixture in INCON model generated the peak von Mises stresses by oblique occlusal force. EXHEX model and INCON model showed the similar opening gap between abutment and fixture, but intimate sealing inside the contact interface was maintained in INCON model. Conclusion: Oblique force produced grater magnitudes of deflection and stress than those by axial force. The maximum stress area at the implant was different between the INCON and EXHEX models.

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF $BR{\AA}NEMARK\;NOVUM^{(R)}$ IMMEDIATE IMPLANT PROSTHODONTIC PROTOCOL ($Br{\aa}nemark\;Novum^{(R)}$ 즉시 임플랜트 보철 수복 방법에 관한 삼차원 유한요소 분석적 연구)

  • Kim Woo-Young;Kim Yung-Soo;Jang Kyung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.463-476
    • /
    • 2001
  • Since the treatment of edentulous patients with osseointegrated implant was first introduced more than 30 years ago, implant therapy has become one of the most important dental treatment modalities today. Based on the previous experience and knowledge, $Br{\aa}nemark\;Novum^{(R)}$ protocol was introduced with the concept of simplifying surgical and prosthetic technique and reducing healing time recently. This protocol recommends the installation of three 5mm wide diameter futures in anterior mandible and the prefabricated titanium bars for superstructure fabrication. This study was designed to analyze the stress distribution at fixture and superstructure area according to changes of fixture number, diameter and superstructure materials. Four 3-dimensional finite element models were fabricated. Model 1 - 5 standard fixtures (13mm long and 3.75mm in diameter) & superstructure consisted of type IV gold alloy and resin Model 2- 3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of type IV gold alloy and resin Model 3-3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of titanium and resin Model 4-3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of titanium and porcelain A 150N occlusal force was applied on the 1st molar of each model in 3 directions - vertical($90^{\circ}$), horizontal($0^{\circ}$) and oblique($120^{\circ}$). After analyzing the stresses and displacements, following results were obtained. 1. There were no significant difference in stress distribution among experimental models. 2. Model 2, 3, 4 showed less amount of compressive stress than that of model 1. However, tensile stress was similar. 3. Veneer material with a high modulus of elasticity demonstrated less stress accumulation in the superstructure. Within the limites of this study, $Br{\aa}nemark\;Novum^{(R)}$ protocol demonstrated comparable biomechanical properties to conventional protocol.

  • PDF

Comparison of removal torque between prefabricated and customized abutment screw (기성품과 맞춤형 임플란트 지대주 나사의 풀림 토크 비교)

  • Jamiyandorj, Otgonbold;Kim, Jee-Hwan;Kim, Mu-Seong;Park, Young-Bum;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.243-248
    • /
    • 2012
  • Purpose: The purpose of this study is to compare the removal torque between prefabricated and customized implant abutment screw. Materials and methods: Three types of implant system (Osstem, Astra, Zimmer) were used. For each system, prefabricated abutment screw (control group) and customized abutment screw (test group) were used to connect the fixture and the abutment (n = 6). Digital torque gauze was used to control the tightening torque and the screws were tightened under each manufacturer's recommendation. 10 minutes after the connection the same tightening torque was applied, and 5 minutes after the second connection, the removal torque was measured. This procedure was repeated 10 times. In the cyclic loading test, 10 minutes after the first connection to the 6 groups (n = 3), the same tightening torque was applied, and a total of 1,000,000 time loading was applied at 30 degree angle to long axis with 50 N load. Repeated measures of ANOVA test (${\alpha}$=.05) was used as statistics to evaluate the effect of repeated loading number on the removal torque. Independent t-test was used to evaluate the difference in removal torque after cyclic loading. Results: The removal torque significantly decreased as the number of loading repetition increased (P<.05). In the 10 time repetition test, there was no significant difference between the prefabricated and customized implant abutment screw of the 3 implant system (P<.05). Also in the cyclic loading test, there was no significant difference between the prefabricated and customized implant abutment screw of the 3 implant system (P<.05). Conclusion: Within the limitation of this study, there was no significant difference in the removal torque between the prefabricated abutment screw and customized abutment screws.

Histomorphometry and Stability Analysis of Loaded Implants with two Different Surface Conditions in Beagle Dogs (하중을 가한 두 가지 표면의 임플란트에 관한 조직형태학적 분석 및 안정성 분석 (비글견을 이용한 연구))

  • Kim, Sang-Mi;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.337-349
    • /
    • 2008
  • Despite an improved bone reactions of Mg-incorporated implants in the animals, little yet has been carried out by the experimental investigations in functional loading conditions. This study investigated the clinical and histologic parameters of osseointegrated Mg-incorporated implants in delayed loading conditions. A total of 36 solid screw implants (diameter 3.75 mm, length 10mm) were placed in the mandibles of 6 beagle dogs. Test groups included 18 Mg-incorporated implants. Turned titanium Implants served as control. Gold crowns were inserted 3 months. Radiographic assessments and stabilitytests were performed at the time of fixture installation, $2^{nd}$ stage surgery, 1 and 3 months after loading. Histological observations and morphometrical measurements were also performed. Of 36 implants, 32 displayed no discernible mobility, corresponding to successful clinical function. There was no statistically significant difference between test implants and controls in marginal bone levels (p=0.413) and RFA values. The mean BIC % in the Mg-implants was $54.4{\pm}20.2%$. The mean BIC % in the turned implant was $48.9{\pm}8.0%$. These differences between the Mg-implant and control implant were not statistically significant (P=0.264). In the limitation of this study, bone-to-implant contact (BIC) and bone area of Mg-incorporated oxidized implant were similar to machine-turned implant. The stability analysis showed no significantly different ISQ values and marginal bone loss between two groups. Considering time-dependent bone responses of Mg-implant, it seems that Mg-implants enhanced bone responses in early loading conditions and osseointegrated similarly to cp Ti implants in delayed loading conditions. However, further investigations are necessary to obtain long-term bone response of the Mg-implant in human.