• Title/Summary/Keyword: fixing agent

Search Result 32, Processing Time 0.03 seconds

Application of PEO/Cofactor System on Papermaking Process for Recycled Fibers (재생 지료 공정에서의 PEO/cofactor 보류 시스템의 적용)

  • Jung, Chul-Hun;Lee, Jin-Ho;Kil, Jung-Ha;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.25-31
    • /
    • 2012
  • Ionic trash in furnish decreases retention and drainage performance of the microparticle retention system using recycled fibers in closed papermaking system. Two retention systems, such as the microparticle system and the PEO/cofactor system, were compared and analyzed to improve retention. The PEO/cofactor system achieved similar retention performance at low addition level as the microparticle system. Optimum ratio of PEO/cofactor dual polymer system was 1:10. Ash retention was increased when using the fixing agent. As the TMP ratio increased, the PEO/cofactor system was more efficient in retention and drainage than the other system. The high molecular weight and non-ionic polymer retention system had less effect on flocculation hindrance than the traditional electrostatic retention system.

Biochemical and cultural characteristics of mineral-solubilizing Acinetobacter sp. DDP346 (미네랄 가용화능을 갖는 Acinetobacter sp. DDP346의 생화학적 및 배양학적 특성)

  • Kim, Hee Sook;Lee, Song Min;Oh, Ka-Yoon;Kim, Ji-Youn;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.333-341
    • /
    • 2021
  • In this study, to select strains suitable as microbial agent from among rhizosphere microorganisms present in rhizosphere soil and roots, the mineral solubilization ability, antifungal activity against 10 types of plant pathogenic fungi, and plant growth-promoting activity of rhizosphere microorganisms were evaluated. As a result, DDP346 was selected because it has solubilization ability of phosphoric acid, calcium carbonate, silicon, and zinc; nitrogen fixing ability; production ability of siderophore, indole-3-acetic acid, and aminocyclopropane-1-carboxylate deaminase; and antifungal activity against seven types of plant pathogenic fungi. DDP346 showed a 99.9% homology with Acinetobacter pittii DSM 21653 (NR_117621.1); phylogenetic analysis also revealed a close relationship with Acinetobacter pittii based on the 16S rRNA base sequence. The growth conditions of DDP346 were identified as temperatures in the range of 10-40 ℃, pH in the range of 5-11, and salt concentrations in the range of 0-5%. In addition, a negative correlation coefficient (r2 = -0.913, p <0.01) was shown between pH change and the solubilized phosphoric acid content of Acinetobacter sp. DDP346, and this is assumed to be due to the organic acid generated during culture. Consequently, through the evaluation of its mineral solubilization ability, antifungal activity against plant pathogenic fungi, and plant growth-promoting activity, the potential for the utilization of Acinetobacter sp. DDP346 as a multi-purpose microbial agent is presented.

The Effect of Agricultural Wastes on Rice Plant Growth (답토양(畓土壤)의 유기물(有機物) 시용효과(施用效果))

  • Lee, Sang-Kyu;Park, Jun-Kyu
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.56-67
    • /
    • 1984
  • As in many other country, the use of organic matter in Korea has long history. Farmers understand the value of organic matter as the source of plant nutrient and soil improving agent in general. Since 50 years ago, the sources of organic matter in paddy soils were compost, rice and barly straw, green manure, animal waste, fish and beancake, etc.. Application of green manures such as vetch and chinese milk vetch showed no significant effect on the yield of brown rice in paddy soil. On the other hand, the effects of compost and rice straw showed more significant on the yield of brown rice in paddy soil. Application of rice straw in rice cultivation is commonly made at different times between harvest, early spring and several weeks before transplanting. Considering the suitable paddy soil for application of rice straw under well to moderately well drained soil, the yield was pronounced more than poorly drained soil. Based on laboratory and field experimants, application of rice straw promoted the decrease of oxidation-reduction potential in well to moderately well drained soil. This results to be enhanced the release of some mineral nutrients,. such as potassium, calcium, silicon, and increase of availability of soil phosphorus. In the field experiments, results obtained from nitrogen fraction on the immobilization-mineralization of the tracer nitrogen applied in paddy soil,the amount and index of organic nitrogen incoporated in soil was more pronounced in rice straw application than control. Rice straw and its transformation products incoporated in the soil, provided the inflow of energy necessary to maintain heterotrophic microbes activities. Rice straw and its transformation products, especially soluble carbohydrate, enhanced the population of free-living heterotrophic $N_2$ - fixing microbes. Moreover, rice straw and its transformation products in paddy soil, enhanced the activities of soil enzymes such as dehydrogenase and urease.

  • PDF

The Synthesis of Diphenyl ethanolamidophosphate (DPEAP) and the Flame Retardancy of Cotton Fabric (Diphenyl ethanolamidophosphate의 합성과 면섬유에 대한 방염성)

  • Huh, Man Woo;Yoon, Jong Ho;Cho, Yong Suk;Kim, Young Suk;Lim, Hak Sang
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.25-34
    • /
    • 1996
  • Diphenyl ethanolamidophosphate(DPEAD) was synthesized for the purpose of developing a new flame retardant for cotton fabric. As the intermediate material was used diphenyl chlorophosphate(DPCP) and it was synthesized by using phosphorus oxychloride and phenol as the starting materials. The final product DPEAP was obtained by the reaction of DPCP and ethanolamine. The flame retardancy of cotton fabrics treated by DPEAP through pad-dry-cure(PDC) process was examined at various conditions. The physical property change of the DPEAP treated cotton fabrics were investigated by examining the drape stiffness, the wrinkle recovery, and the tensile strength. The results are summarized as follows: (1) DPEAP has shown excellent flame retardancy on cotton fabrics in comparison to other flame retardants for cotton fabrics available commercially. (2) The optimal condition for PDC process found was that the curing temperature was 16$0^{\circ}C$, the DPEAP concentration was 10%, the catalyst $({NH_{4})_{2}HPO_{4}$ concentration was 7.0%, and the fixing agent hexamethylol melamine (HMM)/DPEAP weight ratio was 1/8. (3) The wrinkle recovery of the processed fabrics increased with increasing DPEAP concentration. (4) The drape stiffness of the cotton fabrics treated by DPEAP have shown essentially no change until increasing DPEAP concentration to 15 %, however DPEAP concentration exceeds 20% the drape stiffness increased drastically with increasing DPEAP concentration. When DPEAP concentration is kept constant the drape stiffness increased with increasing $({NH_{4})_{2}HPO_{4}$ concentration and HMM/DPEAP weight ratio. (5) The tensile strength of the processed fabrics was lower than that of untreated fabrics, but the tensile strength retention increased with increasing DPEAP concentration.

  • PDF

The Influence of Additives Added to the Melamine and Formalin Mixtures on Sericin Fixation of Raw Silk Fibers (멜라민과 포르말린 혼합액의 첨 가제들이 실크 생사의 세리신 정착에 미치는 영향)

  • Park, Geon-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.412-417
    • /
    • 2009
  • In order to investigate the effective sericin fixation of raw silk fibers the influence of various additives added to the melamine and formalin mixtures on sericin fixation was studied. When raw silk fibers were treated with wetting agent but without subsequent washing before sericin fixation, the strong sericin fixation was obtained by fixing sericin. Adding hydrogen peroxide to the melamine and formalin mixture made sericin fixation worse, resulting weaken the sericin hardness of fixed raw silk fibers and tight bonding of the fibers. On the other hand, it was confirmed that adding sodium hydrosulfite to the melamine and formalin mixtures gave better sericin hardness of fixed raw silk fibers without the bonding of fibers. Supplying additional melamine with he low concentration of sodium hydroxide to the melamine and formalin mixture(melamine:formalin= 1:6) resulted in very good sericin fixation. But adding hydrochloric acid or methanol to the same mixture had no effect on the sericin fixation, and adding magnesium chloride to it made the hardness of sericin fixation even worse.

Diversity of Heterocystous Filamentous Cyanobacteria (Blue-Green Algae) from Rice Paddy Fields and Their Differential Susceptibility to Ten Fungicides Used in Korea

  • Kim Jeong-Dong;Lee Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.240-246
    • /
    • 2006
  • Cyanobacteria are present abundantly in rice fields and are important in helping to maintain rice fields fertility through nitrogen fixation. Many rice fields soil contain a high density of cyanobactera, and over 50% of cyanobacterial genera that are in existence in rice paddy fields are heterocystous filamentous forms. A total of 142 isolates of heterocystous filamentous cyanobacteria were screened from 100 soil samples taken from rice paddy fields in 10 different locations across Korea, classified according to their morphological characteristics under light microscopy, and their susceptibly to fungicides examined. The collected blue-green alga were classified into a total of 14 genera, including seven genera of filamentous cyanobacteria and seven genera of nonfilamentous cyanobacteria. In particular, 142 heterocystous filamentous cyanobacteria were isolated and classified into six genera, including Anabaena, Nostoc, Calothrix, Cylindrospermum, Nodularia, Scytomena, and Tolypotrix. Yet, over 90% of the heterocystous filamentous cyanobacteria isolated from the rice paddy fields belonged to two genera: Anabaena and Nostoc. The response of 129 $N_2-fixing$ cyanobacterial isolates, 53 Anabaena and 76 Nostoc, to 10 fungicides was then investigated. The results showed that the Nostoc spp. were more tolerant of the ten tested fungicides than the Anabaena spp., and among the ten tested fungicides, benomyl showed the highest acute toxicity to Anabaena spp. and Nostoc spp. In conclusion, although benomyl is a very useful agent to control phytopathogenic fungi, the application of this fungicide to rice fields should be considered because of its toxicity to the heterocystous filamentous cyanobacteria.

Evaluation of Water Resistance Properties of Pulp Mold depending on the Types of Raw Materials and the Additives (원료종류 및 첨가제 처리에 따른 펄프몰드의 수분 저항성 평가)

  • Sung, Yong Joo;Kim, Hyung Min;Kim, Dong Sung;Lee, Ji Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.112-119
    • /
    • 2015
  • The pulp mold attract the increasing concern as recyclable, biodegradable, and eco-friendly packaging materials. In order to broaden the applicability of the pulp mold as substitutes of the expanded styrofoam, the properties of various raw materials for the pulp mold were evaluated and the way for improving water resistance properties of the pulp mold were also tested by applying some additives. The higher value in the fines contents and in the water retention value were shown for the TMP (thermomechanical pulp), which resulted in the bulkier pulp mold with the higher moisture absorption property. In case of water resistance properties, the pulp mold made of white ledger stock showed the higher value in water contact angle and very slow water absorption rate. The addition of oil palm EFB fiber showed the improvement in the water resistance of the pulp mold made of UBKP. The effects of various additives on the improvement in the water resistance properties of the pulp mold were tested by using AKD, PVAm, epoxy resin. The application of AKD leaded to the higher increase in the water resistance. The results in this study showed the effects of AKD for the pulp mold could be improved and optimized by the application with fixing agent and by the ageing treatment after production.

Effect of Cooling Rate and the Amount of P Addition on the Refinement of Primary Si in Hypereutectic Al-Si Alloy (과공정 Al-Si 합금의 초정 Si 미세화에 미치는 냉각속도와 P 첨가량의 영향)

  • Hahn, Sang-Bong;Kim, Ji-Hun;You, Bong-Sun;Park, Won-Wook;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.347-355
    • /
    • 1997
  • It is well known that the coarse primary Si in hypereutectic Al-Si alloys deteriorate castability, machinability, and mechanical properties. So, many treatment has been tried to refine the primary Si increasing cooling rate and adding refinement agent. Therefore. the purpose of our work was the observation of the effect on the refinement of primary Si and the analysis of the trend to apply to the casting process by changing the amount of P addition and the cooling rate while fixing the temperature at $750^{\circ}C$ of P addition and the type of AlCuP. In the condition of amount of P addition was fixed, primary Si was finer as cooling rate increased but in case of cooling rate was fixed, the effect of refinement was resisted as incersed the amount of P addition. At a relatively slow cooling rate of $22^{\circ}C/sec$, refinement was governed by the amount of P addition rather than cooling rate. At elevated cooling rate of $51^{\circ}C/sec$ and $99^{\circ}C/sec$, the undercooling due to faster cooling rate promoted nucleation of primary Si rather than P addition more significantly.

  • PDF

Experimental Study on Poultices Applying to Remove Fixative (Paraloid B72) on Earthen Mural Painting

  • Lee, Kyeong Min;Moon, Hye Young;Yu, Yeong Gyeong;Kim, Soon Kwan
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.569-580
    • /
    • 2018
  • The possibility of applying poulticing was studied for removing Paraloid B72, a resin used for fixing an earthen mural painting. Five types of poultices were selected from clay and gel types, and acetone, ethanol, and methyl ethyl ketone(MEK) were used as mixed solvents. The possibility of mixing between the poultice and solvent was investigated, and then the spreadability, fluidity, acidity, drying properties, and solubility of the poultices were examined to confirm the characteristics. A poultice agent, which is suitable for applying to a mural painting, was selected and applied to a painting layer sample coated with Paraloid B72. As a result, all painting layers were good condition at under 50% of the solvent. The removal efficiency of Paraloid B72 was more effective when most of the solvents were used at 50%, rather than at 25%. However, it is difficult to mix 50% of MEK and ethanol with the gel-type poultices. When used at 25%, the removal performance was poorer than that at 50%, but the mixing with all the poultices was successful. In addition, the adsorption and removal power of the gel-type poultice were better than those of the clay-type, but the latter was expected to be more suitable in short-time cases due to its high drying speed. The results of this study show that the dissolution performance varies depending on the poultices and solvents. Hence, the poultice and solvent should be selectively applied, considering the fixative of the mural to be removed.

Inhibitory Effects of Galla Chinensis Extract on Cariogenic Properties of Streptococcus mutans (오배자 Galla Chinensis 추출물이 Streptococcus mutans의 우식활성 억제에 미치는 영향)

  • Park, Bog Im;Jung, Won Chang;You, Sung Jin;Lee, Chan Woo;Kim, Jung Sun;An, So Youn;Jeon, Byung Hun;You, Yong Ouk;Kim, Kang Ju
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.189-194
    • /
    • 2015
  • Streptococcus mutans (S. mutans) is one of the most important bacteria in the formation of dental plaque and dental caries. S. mutans adheres to an acquired pellicle formed on the tooth surface, and aggregates with many oral bacteria, and initiates plaque formation by synthesizing glucan from sucrose, which is catalyzed by glucosyltransferases. S. mutans metabolizes the dietary sugar to the organic acids. The organic acids demineralize tooth surface and result in dental caries. Galla Chinensis have been traditionally used for stopping bleeding of gingiva, removing edema and halitosis, drainage, fixing the teeth and as an antiphlogistic agent. In previous reports, antibacterial effects of Galla Chinensis have been investigated whereas anti-cariogenic effects is still not examined enough. Therefore we tested effects of ethanol extracts of Galla Chinensis on the cariogenic properties such as the growth, acid production, adhesion, and insoluble glucan synthesis of S. mutans. In the result, ethanol extracts of Galla Chinensis showed the inhibition of S. mutans growth and organic acids production over 0.031 mg/ml concentrations. The adhesion of S. mutans to Saliva-coated Hydroxyapatite beads S-HAs has decreased with the increase of concentration of ethanol extracts of Galla Chinensis. And it seems to have adhesion inhibitory effect in concentration of over 0.25 mg/ml. It gives us the result that Galla Chinensis have anti-caries effects. But ethanol extract of Galla Chinensis didn't have inhibitory effect on insoluble glucan synthesis. Preliminary phytochemical analysis of the ethanol extract of Galla Chinensis showed strong phenolic compounds, medium steroids & terpenoids and glycosides, and weak organic acids and peptides. These results suggest that the ethanol extracts of Galla Chinensis may have anti-cariogenic properties, which may be able to be related with strong phenolic compounds.