Browse > Article

Diversity of Heterocystous Filamentous Cyanobacteria (Blue-Green Algae) from Rice Paddy Fields and Their Differential Susceptibility to Ten Fungicides Used in Korea  

Kim Jeong-Dong (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Lee Choul-Gyun (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.2, 2006 , pp. 240-246 More about this Journal
Abstract
Cyanobacteria are present abundantly in rice fields and are important in helping to maintain rice fields fertility through nitrogen fixation. Many rice fields soil contain a high density of cyanobactera, and over 50% of cyanobacterial genera that are in existence in rice paddy fields are heterocystous filamentous forms. A total of 142 isolates of heterocystous filamentous cyanobacteria were screened from 100 soil samples taken from rice paddy fields in 10 different locations across Korea, classified according to their morphological characteristics under light microscopy, and their susceptibly to fungicides examined. The collected blue-green alga were classified into a total of 14 genera, including seven genera of filamentous cyanobacteria and seven genera of nonfilamentous cyanobacteria. In particular, 142 heterocystous filamentous cyanobacteria were isolated and classified into six genera, including Anabaena, Nostoc, Calothrix, Cylindrospermum, Nodularia, Scytomena, and Tolypotrix. Yet, over 90% of the heterocystous filamentous cyanobacteria isolated from the rice paddy fields belonged to two genera: Anabaena and Nostoc. The response of 129 $N_2-fixing$ cyanobacterial isolates, 53 Anabaena and 76 Nostoc, to 10 fungicides was then investigated. The results showed that the Nostoc spp. were more tolerant of the ten tested fungicides than the Anabaena spp., and among the ten tested fungicides, benomyl showed the highest acute toxicity to Anabaena spp. and Nostoc spp. In conclusion, although benomyl is a very useful agent to control phytopathogenic fungi, the application of this fungicide to rice fields should be considered because of its toxicity to the heterocystous filamentous cyanobacteria.
Keywords
Rice field; fungicides; toxicity; inhibition test; $EC_{50}$; Anabaena; Nostoc;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Baek, S. H., X.-X. Sun, Y. J. Lee, S. Y. Wang, K. N. Han, J. K. Choi, J. H. Noh, and E. K. Kim. 2003. Mitigation of harmful algal blooms by sophorolipid. J. Microbiol. Biotechnol. 13: 651-659
2 Faust, M., R. Altenburger, T. Backhaus, W. Bodeker, M. Scholze, and L. H. Grimme. 2000. Ecological risk assessment: Predictive assessment of the aquatic toxicity of multiple chemical mixtures. J. Environ. Qual. 29: 1063-1067   DOI   ScienceOn
3 Ghosh, T. K. and K. C. Saha. 1996. Effects of inoculation of cyanobacteria on nitrogen status and nutrition of rice (Oryza sativa L.) in an Entisol amended with chemical and organic sources of nitrogen. Biol. Fertil. Soils 24: 123-128   DOI
4 Kim, J. M., Y. M. Choi, and H. J. Suh. 2005. Preparation of feather digests as fertilizer with Bacillus pumilis KHS-1. J. Microbiol. Biotechnol. 15: 472-476   과학기술학회마을
5 Kumar, A. and H. D. Kumar. 1998. Nitrogen fixation by blue-green algae, pp. 85-103. In Sen, S. P. (ed.), Proceeding of the Plant Physiological Research, Society for Plant Physiology and Biochemistry, $1^{st}$ International Congress of Plant Physiology, New Delhi, India
6 Ma, J. 2001. Differential sensitivity among populations of two green algae Scenedesmus obliqnus and Chlorella pyrenoidosa to 30 herbicides. Bull. Environ. Contam. Toxicol. 68: 275- 281
7 Ma, J. and W. Liang. 2001. Acute toxicity of 12 herbicides to the green algae Chlorella pyrenoidosa and Scenedesmus obilqnus. Bull. Environ. Contam. Toxicol. 66: 536-541   DOI
8 Moreno-Garrido, I., L. M. Lubian, and A. M. V. M. Soares. 2000. Influence of cellular density on determination in EC50 in microalgal growth inhibition tests. Ecotoxicol. Environ. Saf. 47: 112-116   DOI   ScienceOn
9 Wang, W. and K. Freemark. 1995. The use of plants for environmental monitoring and assessment. Ecotoxicol. Environ. Saf. 30: 289-301   DOI   ScienceOn
10 Zaccaro de Mule, M. C., G. Zulpa de Caire, M. Storni de Cano, R. M. Palma, and K. Colombo. 1999. Effect of cyanobacterial inoculation and fertilizers on rice seedlings and post-harvest soil structure. Commun. Soil Sci. Plant Anal. 30: 97-108   DOI   ScienceOn
11 Ihm, Y.-B., K.-S. Kim, K.-S. Kyung, N.-S. Kim, H.-Y. Ha, H.-D. Lee, K.-S. Oh, J.-W. Kim, and G.-H. Ryu. 2003. Survey of pesticide usage on fruits in Korea. Kor. J. Pest. Sci. 7: 258-263
12 Castenholz, R. W. 1984. Subsection I. Order Ocillatoriales. Subsection IV. Order Nostocales, pp. 1771-1799. In Holt, J. G. (ed.), Bergey's Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore, U.S.A
13 Kasai, F., N. Takamura, and S. Hatakeyama. 1993. Effect of simetryn on growth of various freshwater algal texa. Environ. Pollut. 79: 77-83   DOI   ScienceOn
14 Ma, J., W. Liang, L. Xu, S. Wang, Y. Wei, and J. Lu. 2001. Acute toxicity of 33 herbicides to the green algae Chlorella pyrenoidosa. Bull. Environ. Contam. Toxicol. 66: 536-541   DOI
15 Fernandez-Valiente, E., A. Ucha, A. Quesada, F. Leganes, and R. Careres. 2000. Contribution of $N_{2}$ fixing cyanobacteria to rice production: Availability of nitrogen from $^{15}N$-labelled cyanobacteria and ammonium sulphate to rice. Plant Soil 211: 107-112
16 Yanni, Y. G. 1992. Fertilizer responses of rice to nitrogen and cyanobacteria in the presence of insecticides. Soil Biol. Biochem. 24: 1085-1088   DOI   ScienceOn
17 Jay, A. E. 1996. Toxic effect of organic solvents on the growth of Chlorella vulgaris and Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 57: 191-198   DOI
18 Park, T.-G. and S.-D. Song. 1994. Effects of Anabaena variabilis ATCC 29413 on the growth of rice. J. Environ. Sci. 8: 25-40
19 Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 11: 1-61
20 DeLuca, T. H., L. E. Drinkwater, B. A. Wiefling, and D. M. DeNicola. 1996. Free-living nitrogen-fixing bacteria in temperate cropping systems: Influence of nitrogen source. Biol. Fert. Soils 23: 140-144   DOI
21 Kim, J. P., C. D. Kang, S. J. Sim, M. S. Kim, T. H. Park, D. Lee, D. Kim, J.-H. Kim, Y. K. Lee, and D. Pak. 2005. Cell age optimization for hydrogen production induced by sulfur deprivation using a green alga Chlamydomonas reinhardtii UTEX 90. J. Microbiol. Biotechnol. 15: 131-135   과학기술학회마을
22 Begum, Z. N. T., R. Mandal, Z. U. M. Hhan, and M. Z. Hossain. 1994. Prospect and potentiality of cyanobacteria as an alternative source of nitrogen fertilized in Bangladesh rice cultivation, pp. 119-131. In Rahman, M., A. K. Podder, C. Van-Hove, Z. Begum, T. Heulin, and A. Hartmann (eds.), Biological Nitrogen Fixation Associated with Rice Production. International Symposium on Biological Nitrogen Fixation Associated with Rice, Dhaka, Bangladesh
23 Kim, Y. M., K. Park, J. H. Choi, J. E. Kim, and I. K. Rhee. 2004. Biotransformation of the fungicide chlorothalonil by bacteria glutathione S-transferase. J. Microbiol. Biotechnol. 14: 938-943
24 Atri, N. and L. C. Rai. 2003. Differential responses of three cyanobacteria to UV-B and Cd. J. Microbiol. Biotechnol. 13: 544-551
25 Allen, M. M. 1968. Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol. 4: 1-13
26 Ferrando, M. D., E. Sancho, and E. Andreu-Moliner. 1996. Chronic toxicity of fenitrothion to an algae (Nannochloris oculata), a rotifer (Brachionus calyciflorus), and the cladoceran (Daphnia magna). Ecotoxicol. Environ. Saf. 35: 112- 120   DOI   ScienceOn
27 Kannaiyan, S., S. J. Aruna, S. Merina Prem Kumari, and D. O. Hall. 1997. Immobilized cyanobacteria as a biofertilizer for rice crops; Intl. Conference on Applied Agrology, Knysna, South Africa, April 1996. J. Appl. Phycol. 9: 167-174   DOI
28 Lee, J.-Y., T.-S. Kwon, K. Baek, and J.-W. Yang. 2005. Biological fixation of $CO_{2}$ by Chlorella sp. HA-1 in a semi-continuous and series reactor system.. J. Microbiol. Biotechnol. 15: 461-465   과학기술학회마을
29 Waterbury, J. B. and R. Rippka. 1984. Subsection I. Chroococcales, pp. 1728-1746. In Holt, J. G. (ed.), Bergey's Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore, U.S.A
30 Choudhury, A. T. M. A. and L. R. Kennedy. 2004. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Soil Biol. Biochem. 39: 219- 227
31 Roger, P. A. 1995. Biological $N_{2}$ fixation and its management in wetland rice cultivation. Fertil. Res. 42: 261-276   DOI
32 Park, M. K., K. H. Liu, Y. Lim, Y. H. Lee, H. G. Hur, and J. H. Kim. 2003. Biotransformation of a fungicide ethaboxam by soil fungus Cunninghamella elegans. J. Microbiol. Biotechnol. 13: 43-49
33 Hammouda, O. 1999. Response of the paddy field cyanbacterium Anabaena doliolum to carbofuran. Ecotoxicol. Environ. Saf. 44: 215-219   DOI   ScienceOn
34 Wyatt, J. T. and J. K. G. Silvey. 1969. Nitrogen fixation by Gloeocapsa. Science 16: 908-909   DOI
35 Boone, D. R. and R. W. Castenholz. 2001. The Arachae and the deeply branching and phototrophic bacteria, pp. 473- 599. In Garrity, G. M. (ed.), Bergey's Manual of Systematic Bacteriology, 2nd Ed. vol. 1. Spriner-Verlag, New York, Berlin, Heidelberg
36 Lee, J. K., F. Fuhr, K. S. Kyung, K. C. Ahn, and J. W. Kwon. 2002. Fate of the residues of the fungicide flutlanil in a microecosystem planted with rice plants. Agric. Chem. Biotechnol. 45: 31-36
37 Abou-Waly, H., M. M. Abou-Setta, H. N. Nigg, and L. Mallory. 1991. Growth response of freshwater algae, Anabaena flos-aquae and Selenastrum capricornutum to atrazine and hexazinone herbicides. Bull. Environ. Contam. Toxicol. 46: 223-229   DOI
38 Lee, H. K., J. E. Park, G. H. Ryu, J. O. Lee, and Y. S. Park. 1993. Fresh-water algae occurred in paddy rice fields. V. Fertilizer response and chemical control. Kor. J. Weed Sci. 13: 1-6