• Title/Summary/Keyword: fixed insulation

Search Result 45, Processing Time 0.027 seconds

Economic Analysis of Installing Fixed and Removable Insulation for Pipe Wall Thinning Management (배관감육 관리를 위한 고정식 및 탈착식 보온재 설치 경제성 분석)

  • Hwang, Kyeongmo;Yun, Hun
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.320-325
    • /
    • 2016
  • To perform ultrasonic testing (UT) thickness measurement of the secondary side piping installed in nuclear power plants, the insulation for preventing heat loss should be removed. The type of insulation can be divided into fixed and removable insulation. Fixed and removable insulation have their own strengths and weaknesses. Removable insulation has been installed in the components susceptible to wall thinning caused by FAC and erosion from Shin-Kori unit 1, which commenced its commercial operation in 2011. In this paper, the number of repeated inspections of components and the number of replacements of fixed insulation were estimated and a more economical way was identified based on the manufacturing and installation costs for fixed and removable insulation.

Performance Evaluation of Adhesively Fixed External Insulation and Finish System Using Vacuum Insulation Panels for Apartment Buildings (공동주택 습식 진공 외단열시스템 성능 평가)

  • Park, Si Hyun;Lim, Jae Han;Song, Seung Yeong
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.45-53
    • /
    • 2013
  • For the target goal of Zero-energy House construction in 2025, the government announced that the insulation regulations will be continuously enhanced. It has been predicted that high-performance insulation materials, such as vacuum insulation panel (VIP), should be used to decrease the thickness of outer walls. The aim of this study was to evaluate the performance of adhesively fixed external insulation and finish system (EIFS) with VIP. The energy performance of a base model with conventional internal insulation system and three alternatives of EIFS with VIP were analyzed by three-dimensional heat transfer simulation. Construction cost and convenience of each alternative were also evaluated and compared. As results, effective alternatives in terms of each performance as well as overall performance considering the weighting factors of each performance were suggested.

Insulation Properties of CLC according to Mixing Ratio of EPS Bead (EPS Bead 혼입비율에 따른 CLC의 단열특성)

  • Lee, Jeong-Taek;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.45-46
    • /
    • 2023
  • CLC is used as a filling material for many buildings, and according to energy saving design standards, CLC also requires insulation performance. However, it shows lower insulation performance compared to organic insulation, so additional research is needed. Therefore, in this study, the insulation properties of CLC were analyzed by incorporating EPS beads with high insulation performance into CLC. In this experiment, EPS beads and blast furnace slag were replaced, and W/B was fixed at 33%. The EPS Bead mixing ratio was divided into 5 levels: 0, 0.5, 1.0, 1.5, 2.0 (%), and the experimental items were measured for apparent density and thermal conductivity. As a result of the experiment, the apparent density and thermal conductivity tended to decrease as the mixing ratio of EPS beads increased. It is judged that the density decreased due to the low density and the micropores inside, and the thermal conductivity also decreased.

  • PDF

A Study on the Enhancement of the Sound Insulation Performance of Windows through the Laboratory Tests (실험실 실험을 통한 창의 차음성능 개선에 관한 연구)

  • Kim, Sun-Woo;Chung, Jin-Yun;Lee, Ok-Kyun;Jang, Hyun-Choong;Park, Hyeon-Ku;Song, Hyuk
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.307-314
    • /
    • 2001
  • This study aims to provide fundamental data for enhancing the sound insulation performance of windows. For this study, windows composed of various types and thicknesses, were classified into five categories; fixed, single, double, triple and airtight, and then tested. In order to analyze their sound insulation characteristics and performances. test results were rated using methods such as D, STC, Ts and arithmetical mean. It was found that the sound insulation performance of windows is affected due to their type rather than the thickness of the glass. It was also found that when gap between the inner and outer frames was filled with caulking material, the sound transmission loss at high frequency bands was greatly improved. Therefore, the sound insulation performance of windows would be enhanced by minimizing the gap between frames.

  • PDF

Effect of Mixing Ratio of Spherical Silica on the Electrical Insulation Breakdown Strength in Epoxy Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.101-104
    • /
    • 2013
  • The effect of the mixing ratio of spherical silica on the electrical insulation breakdown strength in an epoxy/silica composite was studied. Spherical silicas with two average particle sizes of $5{\mu}m$ and $20{\mu}m$ were mixed in different mixing ratios, and their total filling content was fixed at 60 wt%. In order to observe the dispersion of the silicas and the interfacial morphology between silica and epoxy matrix, scanning electron microscopy (SEM) was used. The electrical insulation breakdown strength was estimated in sphere-sphere electrodes with different insulation thicknesses of 1, 2, and 3 mm. Electrical insulation breakdown strength decreased with increasing mixing ratio of $5/20{\mu}m$ and the thickness dependence of the breakdown strength was also observed.

Effect of Particle Size on the Mechanical and Electrical Properties of Epoxy/Spherical Silica Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.39-42
    • /
    • 2013
  • The effects of particle size on the mechanical and electrical properties of epoxy/spherical silica composites were studied. The silica particle sizes were varied from 5 to 30 ${\mu}m$ and the filler content was fixed to 60 wt%. Tensile and flexural tests were carried out and the interfacial morphology was observed by scanning electron microscopy (SEM). The electrical insulation breakdown strength was estimated using sphere-sphere electrodes with different insulation thicknesses of 1, 2 and 3 mm. The tensile strength and flexural strength increased with decreasing particle size, while electrical insulation breakdown strength increased with increasing particle size.

Thermal Analysis Comparison of IMO with USCG Design Condition for the INGC During the Cool-down Period (급냉각기간에서 IMO설계조건과 USCG 설계조건에 대한 LMGC 화물탱크의 열해석 비교)

  • Lee, Jung-Hye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1390-1397
    • /
    • 2004
  • This study is concerned with the thermal analysis during the cool-down period of 135,000㎥ class GT-96 membrane type LNG carrier under IMO and USCG design condition. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls down from -4$0^{\circ}C$ to -l3$0^{\circ}C$, and the spraying rate for the cooling of the insulation wall increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the first barrier and the first insulation, which are among the insulation wall, especially in the top side of the insulation wall under IMO and USCG design condition. Also, as the NG temperature distribution is fixed, the outer temperature condition under the design condition has influence on the temperature variation at the insulation. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted under IMO and USCG design condition. From the comparison between two conditions; IMO design condition shows more severe temperature gradient than USCG design condition, therefore, it provides the conservative estimation of the BOG.

Dynamic Time Constant Based High-Performance Insulation Resistance Calculation Method (동적 시정수 기반 고성능 절연 저항 계산 기법)

  • Son, Gi-Beom;Hong, Jong-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1058-1063
    • /
    • 2020
  • This paper presents a new insulation resistance calculation technique to prevent electric shock and fire accidents due to the dielectric breakdown in the primary insulation section of the IT ground system. The solar power generation market is growing rapidly due to the recent expansion of renewable energy and energy storage systems, but as the insulation is destroyed and fire accidents frequently occur, a device for monitoring the insulation resistance state is indispensable to the IT grounding method. Compared to the conventional algorithm that use a method of multiplying a time constant to a fixed coefficient, the proposed insulation resistance calculation method has a fast response time and high accuracy over a wide insulation resistance range by applying a different coefficient according to the values of the insulation impedance. The proposed dynamic time constant based insulation resistance calculation technique reduces the response time by up to 39.29 seconds and improves the error rate by 20.11%, compared to the conventional method.

A Study on Electrical Insulation Breakdown and Tensile Strength for Epoxy/Spherical Silica Composites (에폭시/구상실리카 콤포지트의 전기적 절연파괴 및 인장 강도 특성 연구)

  • Lee, Seung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.726-730
    • /
    • 2013
  • In order to develop a high voltage insulation material, spherical silicas with two average particle sizes of 5 ${\mu}m$ and 20 ${\mu}m$ were mixed in different mixing ratios (1:0, 0.7:0.3, 0.5:0.5, 0.3:0.7, 0:1) and their total filling content was fixed at 65 wt%. In order to observe the dispersion of the spherical silicas and the interfacial morphology between silica and epoxy matrix, field emission scanning electron microscope (FE-SEM) was used. The electrical insulation breakdown strength was estimated in sphere-plate electrodes with different insulation thicknesses of 1, 2, and 3 mm. Electrical insulation breakdown strength decreased with increasing mixing ratio of 5/20 ${\mu}m$ and the thickness dependence of the breakdown strength was also observed. The tensile strength of the neat epoxy was 82.8 MPa as average value and its increased with decreasing particles size and that of epoxy/silica (2 ${\mu}m$) was 107 MPa, which was 130.8% higher value.

Analysis of DC insulation and properties of epoxy/ceramic composites with nanosized ZnO/TiO2 fillers

  • Kwon, Jung-Hun;Kim, Yu-Min;Kang, Seong-Hwa;Kim, Pyung-Jung;Jung, Jong-Hoon;Lim, Kee-Joe
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.332-335
    • /
    • 2012
  • A molded transformer is maintenance-free, which makes it unnecessary to replace the insulating material, like in an oil-filled transformer, because the epoxy, which is a molded insulating resin, does not suffer variations in its insulating performance for heat cycles over a long time, as compared to insulating oil. In spite of these advantages, a molded transformer may still be accessed by the user, which is not good in regards to reliability or noise compared to the oil transformers. In particular, a distrust exists regarding reliability due to the long-term insulating performance. These properties have been studied in regards to the improvement of epoxy composites and molded transformer insulation. There have nevertheless been insufficient investigations into the insulation properties of epoxy composites. In this study, it is a researching of the epoxy for insulating material. In order to prepare the specimens, a main resin, a hardener, an accelerator, and a nano/micro filler were used. Varying amounts of TiO2 and ZnO nano fillers were added to the epoxy mixture along with a fixed amount of micro silica. This paper presents the DC insulation breakdown test, thermal expansion coefficient, and thermal conductivity results for the manufactured specimens. From these results, it has been found that the insulating performance of nano/micro epoxy composites is improved as compared to plain molded transformer insulation, and that nano/micro epoxy composites contribute to the reliability and compactness of molded transformers.