• 제목/요약/키워드: first-order shear deformation theory (FSDT)

검색결과 153건 처리시간 0.023초

A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory

  • Mokhtar, Youcef;Heireche, Houari;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.397-405
    • /
    • 2018
  • In this paper, a novel simple shear deformation theory for buckling analysis of single layer graphene sheet is formulated using the nonlocal differential constitutive relations of Eringen. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Nonlocal elasticity theory is employed to investigate effects of small scale on buckling of the rectangular nano-plate. The equations of motion of the nonlocal theories are derived and solved via Navier's procedure for all edges simply supported boundary conditions. The results are verified with the known results in the literature. The influences played by Effects of nonlocal parameter, length, thickness of the graphene sheets and shear deformation effect on the critical buckling load are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the buckling nanoplates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate

  • Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Bessaim, Aicha
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.547-565
    • /
    • 2016
  • In this work a new 3-unknown non-polynomial shear deformation theory for the buckling and vibration analyses of functionally graded material (FGM) sandwich plates is presented. The present theory accounts for non-linear in plane displacement and constant transverse displacement through the plate thickness, complies with plate surface boundary conditions, and in this manner a shear correction factor is not required. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only 3 unknowns as the case of the classical plate theory (CPT) and which is even less than the first order shear deformation theory (FSDT). The plate properties are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton's principle. Analytical solutions of natural frequency and critical buckling load for functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the present non-polynomial plate theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.

Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory

  • Loghman, Abbas;Faegh, Reza K.;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.533-547
    • /
    • 2018
  • In this paper the time-dependent creep analysis of a thick-walled FG cylinder with finite length subjected to axisymmetric mechanical and thermal loads are presented. First order shear deformation theory (FSDT) is used for description of displacement components. Inner and outer temperatures and outer pressure are considered as thermo-mechanical loadings. Both thermal and mechanical loadings are assumed variable along the axial direction using the sinusoidal distribution. To find temperature distribution, two dimensional heat transfer equation is solved using the required boundary conditions. The energy method and Euler equations are employed to reach final governing equations of the cylinder. After determination of elastic stresses and strains, the creep analysis can be performed based on the Yang method. The results of this research indicate that the boundaries have important effects on the responses of the cylinder. The effect of important parameters of this analysis such as variable loading, non-homogeneous index of functionally graded materials and time of creep is studied on the behaviors of the cylinder.

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel

  • Kashkoli, Mosayeb Davoudi;Tahan, Khosro Naderan;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.701-715
    • /
    • 2019
  • Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.

General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory

  • Nasihatgozar, M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.151-176
    • /
    • 2017
  • This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse displacements are modeled using the third order of the Taylor's series extension. It provides the potentiality for considering both compressible and incompressible cores. To find these equations and boundary conditions, Hamilton's principle is used. Also, the effect of trapezoidal shape factor for cross-section of curved panel element ($1{\pm}z/R$) is considered. The natural frequency parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the natural frequencies of DCSP are presented.

Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory

  • Zarga, Djaloul;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.389-410
    • /
    • 2019
  • In this article, a simple quasi-3D shear deformation theory is employed for thermo-mechanical bending analysis of functionally graded material (FGM) sandwich plates. The displacement field is defined using only 5 variables as the first order shear deformation theory (FSDT). Unlike the other high order shear deformation theories (HSDTs), the present formulation considers a new kinematic which includes undetermined integral variables. The governing equations are determined based on the principle of virtual work and then they are solved via Navier method. Analytical solutions are proposed to provide the deflections and stresses of simply supported FGM sandwich structures. Comparative examples are presented to demonstrate the accuracy of the present theory. The effects of gradient index, geometrical parameters and thermal load on thermo-mechanical bending response of the FG sandwich plates are examined.

A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates

  • Hebali, Habib;Bakora, Ahmed;Tounsi, Abdelouahed;Kaci, Abdelhakim
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.473-495
    • /
    • 2016
  • This work presents a bending, buckling, and vibration analysis of functionally graded plates by employing a novel higher-order shear deformation theory (HSDT). This theory has only four unknowns, which is even less than the first shear deformation theory (FSDT). A shear correction coefficient is, thus, not needed. Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

Finite element vibration analysis of laminated composite parabolic thick plate frames

  • Das, Oguzhan;Ozturk, Hasan;Gonenli, Can
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.43-59
    • /
    • 2020
  • In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory (FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.

A novel four variable refined plate theory for wave propagation in functionally graded material plates

  • Fourn, Hocine;Atmane, Hassen Ait;Bourada, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.109-122
    • /
    • 2018
  • In This work an analysis of the propagation of waves of functionally graduated plates is presented by using a high order hyperbolic (HSDT) shear deformation theory. This theory has only four variables, which is less than the theory of first order shear deformation (FSDT). Therefore, a shear correction coefficient is not required. Unlike other conventional shear deformation theories, the present work includes a new field of displacement which introduces indeterminate integral variables. The properties of materials are supposed classified in the direction of the thickness according to two simple distributions of a power law in terms of volume fractions of constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

Examination of non-homogeneity and lamination scheme effects on deflections and stresses of laminated composite plates

  • Zerin, Zihni;Turan, Ferruh;Basoglu, Muhammed Fatih
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.603-616
    • /
    • 2016
  • In this study, a convenient formulation for the bending of laminated composite plates that hold non-homogeneous properties is examined. The constitutive equations of first order shear deformation plate theory are obtained using Hamilton Principle. The effect of non-homogeneity, lamination schemes and aspect ratio on the deflections and stresses is analysed. It is understood from the study that economical and optimum designs for laminated composite plates can be achieved by changing lamination scheme and by considering non-homogeneity response of composite plate.