• Title/Summary/Keyword: first-order shear deformation theory (FSDT)

Search Result 153, Processing Time 0.024 seconds

The Analysis of Smart Plate Using Enhanced First Shear Deformation Theory (개선된 일차전단변형이론을 이용한 지능구조평판의 거동해석)

  • Oh, Jin-Ho;Kim, Heung-Su;Rhee, Seung-Yun;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.663-668
    • /
    • 2007
  • An enhanced first shear deformation theory for composite plate is developed. The detailed process is as follows. Firstly, the theory is formulated by modifying higher order zigzag theory. That is, the higher order theory is separated into the warping function representing the higher order terms and lower order terms. Secondly, the relationships between higher order zig-zag field and averaged first shear deformation field based on the Reissner-Mindlin's plate theory are derived. Lastly, the effective shear modulus is calculated by minimizing error between higher order energy and first order energy. Then the governing equation of FSDT is solved by substituting shear modulus into effective shear modulus. The recovery processing with the nodal unknown obtained from governing equation is performed. The accuracy of the present proposed theory is demonstrated through numerical examples. The proposed method will serve as a powerful tool in the prediction of laminated composite plate.

  • PDF

Efficient Thermal Stress Analysis of Laminated Composite Plates using Enhanced First-order Shear Deformation Theory (일차전단변형이론을 이용한 복합재료 적층평판의 효율적 열응력 해석)

  • Han, Jang-Woo;Kim, Jun-Sik;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.505-512
    • /
    • 2012
  • In this paper, an efficient yet accurate method for the thermal stress analysis using a first order shear deformation theory(FSDT) is presented. The main objective herein is to systematically modify transverse shear strain energy through the mixed variational theorem(MVT). In the mixed formulation, independent transverse shear stresses are taken from the efficient higher-order zigzag plate theory, and the in-plane displacements are assumed to be those of the FSDT. Moreover, a smooth parabolic distribution through the thickness is assumed in the transverse normal displacement field in order to consider a transverse normal deformation. The resulting strain energy expression is referred to as an enhanced first order shear deformation theory, which is obtained via the mixed variational theorem with transverse normal deformation effect(EFSDTM_TN). The EFSDTM_TN has the same computational advantage as the FSDT_TN(FSDT with transverse normal deformation effect) does, which allows us to improve the through-the-thickness distributions of displacements and stresses via the recovery procedure. The thermal stresses obtained by the present theory are compared with those of the FSDT_TN and three-dimensional elasticity.

Bending Analysis of Symmetrically Laminated Composite Open Section Beam Using the First-Order Shear Deformation Beam Theory (Timoshenko형 전단변형을 고려한 대칭적층 개단면 복합재 보의 휨해석)

  • 권효찬;박영석;신동구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.43-50
    • /
    • 2000
  • In the first-order shear deformation laminated beam theory (FSDT), the Kirchhoff hypothesis is relaxed such that the transverse normals do not remain perpendicular to the midsurface after deformation. Bending behavior of laminated composite thin-walled beams with singly- and doubly-symmetric open sections under uniformly distributed and concentrated loads is analyzed by the Timoshenko-type thin-walled beam theory. A closed-form expression for the shear correction factor of I-shaped composite laminated section is obtained. Numerical examples are presented to compare present analytical solutions by FSDT with the finite element solutions obtained by using three dimensional model. The effects of lamination of scheme and length-to-height ratio on the shear deformation of laminated composite beams with various boundary conditions are studied.

  • PDF

Displacements and stresses in pressurized thick FGM cylinders with exponentially varying properties based on FSDT

  • Ghannad, Mehdi;Gharooni, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.939-953
    • /
    • 2014
  • Using the infinitesimal theory of elasticity and analytical formulation based on the first-order shear deformation theory (FSDT) is presented for axisymmetric thick-walled cylinders made of functionally graded materials under internal and/or external uniform pressure. The material is assumed to be isotropic heterogeneous with constant Poisson's ratio and radially exponentially varying elastic modulus. At first, general governing equations of the FGM thick cylinders are derived by assumptions of the FSDT. Then the obtained equations are solved under the generalized clamped-clamped conditions. The results are compared with the findings of both FSDT and finite element method (FEM).

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

An Accurate and Efficient Analysis of Composite Plates Based on Enhanced First-order Shear Deformation Theory (개선된 일차전단변형이론을 이용한 복합재료 적층평판의 고정밀 해석)

  • Kim, Jun-Sik;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.407-418
    • /
    • 2006
  • In this paper, an efficient yet accurate stress analysis based on the first-order shear deformation theory (FSDT) is presented. The transverse shear strain energy is modified via the mixed variational theorem, so that the shear correction factors are automatically involved in the formulation. In the mixed variational formulation, the transverse stresses are taken to be functions subject to variations. The transverse shear stresses based on an efficient higher order plate theory (EHOPT, Cho and Parmerter, 1993) are utilized and modified, while the transverse normal stress is assumed to be the third-order polynomial of thickness coordinates, which satisfies both zero transverse shear stresses and prescribed surface fractions in top and bottom surfaces. On the other hand, the displacements are assumed to be those of the FSDT Resulting strain energy expressions are referred to as an EFSDTM3D that stands for an enhanced first-order shear deformation theory based on the mixed formulation for three dimensional elasticity, The developed EFSDTM3D preserves the computational advantage of the classical FSDT while allowing for important local through-the-thickness variations of displacements and stresses through the recovery procedure that is based on the least square minimization of in-plane stresses. Comparisons of displacements and stresses of both laminated and sandwich plates using the present theory are made with the classical FSDT, three-dimensional exact solutions, and available data in the literature.

A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates

  • Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bessaim, Aicha;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.257-276
    • /
    • 2016
  • In this paper, a new simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded (FG) plates is developed. The significant feature of this formulation is that, in addition to including a sinusoidal variation of transverse shear strains through the thickness of the plate, it deals with only three unknowns as the classical plate theory (CPT), instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The accuracy of the present solutions is verified by comparing the obtained results with those predicted by classical theory, first-order shear deformation theory, and higher-order shear deformation theory. Verification studies show that the proposed theory is not only accurate and simple in solving the bending and free vibration behaviours of FG plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.867-891
    • /
    • 2014
  • An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is presented for static flexure of cross-ply laminated composite and sandwich plates. The inplane displacement field uses sinusoidal function in terms of thickness coordinate to include the transverse shear deformation effect. The cosine function in thickness coordinate is used in transverse displacement to include the effect of transverse normal strain. The kinematics of the present theory is much richer than those of the other higher order shear deformation theories, because if the trigonometric term (involving thickness coordinate z) is expanded in power series, the kinematics of higher order theories (which are usually obtained by power series in thickness coordinate z) are implicitly taken into account to good deal of extent. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The closed-form solutions of simply supported cross-ply laminated composite and sandwich plates have been obtained. The results of present theory are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory.

Analytical solutions to piezoelectric bimorphs based on improved FSDT beam model

  • Zhou, Yan-Guo;Chen, Yun-Min;Ding, Hao-Jiang
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.309-324
    • /
    • 2005
  • This paper presents an efficient and accurate coupled beam model for piezoelectric bimorphs based on improved first-order shear deformation theory (FSDT). The model combines the equivalent single layer approach for the mechanical displacements and a layerwise modeling for the electric potential. General electric field function is proposed to reasonably approximate the through-the-thickness distribution of the applied and induced electric potentials. Layerwise defined shear correction factor (k) accounting for nonlinear shear strain distribution is introduced into both the shear stress resultant and the electric displacement integration. Analytical solutions for free vibrations and forced response under electromechanical loads are obtained for the simply supported piezoelectric bimorphs with series or parallel arrangement, and the numerical results for various length-to-thickness ratios are compared with the exact two-dimensional piezoelasticity solution. Excellent predictions with low error estimates of local and global responses as well as the modal frequencies are observed.

A refined theory with stretching effect for the flexure analysis of laminated composite plates

  • Draiche, Kada;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.671-690
    • /
    • 2016
  • This work presents a static flexure analysis of laminated composite plates by utilizing a higher order shear deformation theory in which the stretching effect is incorporated. The axial displacement field utilizes sinusoidal function in terms of thickness coordinate to consider the transverse shear deformation influence. The cosine function in thickness coordinate is employed in transverse displacement to introduce the influence of transverse normal strain. The highlight of the present method is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\neq}0$), the displacement field is constructed with only 5 unknowns, as against 6 or more in other higher order shear and normal deformation theory. Governing equations of the present theory are determined by employing the principle of virtual work. The closed-form solutions of simply supported cross-ply and angle-ply laminated composite plates have been obtained using Navier solution. The numerical results of present method are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy, higher order shear and normal deformation theory (HSNDT) and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory. It can be concluded that the proposed method is accurate and simple in solving the static bending response of laminated composite plates.