• Title/Summary/Keyword: first-order kinetic model

Search Result 225, Processing Time 0.028 seconds

Kinetics and Isotherm Analysis of Valuable Metal Ion Adsorption by Zeolite Synthesized from Coal Fly Ash (석탄비산재로부터 합성한 제올라이트를 이용한 유가금속이온의 흡착속도 및 등온 해석)

  • Ahn, Kab-Hwan;Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • In this study, zeolite (Z-C2) was synthesized using a fusion/hydrothermal method on coal fly ash (FA) discharged from a thermal power plant in the Ulsan area and then analyzed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The Z-C2 was characterized in terms of mineralogical composition and morphological analysis. The XRD results showed that its peaks had the characteristics of Na-A zeolite in the range of $2{\theta}$ of 7.18~34.18. The SEM images confirmed that the Na-A zeolite crystals had a chamfered-edge crystal structure almost identical to that of the commercial zeolite. The adsorption kinetics of Cu, Co, Mn and Zn ions by Z-C2 were described better by the pseudo-second-order kinetic model more than by the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model did. The maximum adsorption capacities of Cu, Co, Mn and Zn ions obtained from the Langmuir model were in the following order : Cu (94.7 mg/g) > Co (77.7 mg/g) > Mn (57.6 mg/g) > Zn (51.1 mg/g). These adsorption capacities are regarded as excellent compared to those of commercial zeolite.

Moringa Oleifera, A Biosorbent for Resorcinol Adsorption-Isotherm and Kinetic Studies

  • Kalavathy, M. Helen;Swaroop, G.;Padmini, E.;Lima Rose, Miranda
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.23-32
    • /
    • 2009
  • The adsorption of phenolic compound resorcinol on activated carbons prepared from Moringa oleifera (Drumstick bark) has been investigated. Activated carbon was prepared by impregnating Moringa oleifera with 50% phosphoric acid in the ratio of 1:1 and 1:2(w/w), designated as MOAC1 and MOAC2. Equilibrium and isotherm studies were carried out. The influences of variables such as contact time, initial concentration of resorcinol, carbon dosage in the solution on percentage adsorption and adsorption capacity of the bark have been analysed. The equilibration time was found to be 4 h. Kinetics of resorcinol onto activated carbons was checked for pseudo first order and pseudo second order model. It was found that the adsorption of resorcinol follows pseudo second order kinetics for both MOAC1 and MOAC2. The isotherm data were correlated with isotherm models, namely Langmuir and Freundlich. Adsorption isotherms were satisfactorily fitted by both the Langmuir and Freundlich model for MOAC1 and MOAC2.

Batch and Flow-Through Column Studies for Cr(VI) Sorption to Activated Carbon Fiber

  • Lee, In;Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Son, Jeong-Woo;Yi, In-Geol;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • The adsorption of Cr(VI) from aqueous solutions to activated carbon fiber (ACF) was investigated using both batch and flow-through column experiments. The batch experiments (adsorbent dose, 10 g/L; initial Cr(VI) concentration, 5-500 mg/L) showed that the maximum adsorption capacity of Cr(VI) to ACF was determined to 20.54 mg/g. The adsorption of Cr(VI) to ACF was sensitive to solution pH, decreasing from 9.09 to 0.66 mg/g with increasing pH from 2.6 to 9.9; the adsorption capacity was the highest at the highly acidic solution pHs. Kinetic model analysis showed that the Elovich model was the most suitable for describing the kinetic data among three (pseudo-first-order, pseudo-second-order, and Elovich) models. From the nonlinear regression analysis, the Elovich model parameter values were determined to be ${\alpha}$ = 162.65 mg/g/h and ${\beta}$ = 2.10 g/mg. Equilibrium isotherm model analysis demonstrated that among three (Langmuir, Freundlich, Redlich-Peterson) models, both Freundlich and Redlich-Peterson models were suitable for describing the equilibrium data. In the model analysis, the Redlich-Peterson model fit was superimposed on the Freundlich fit. The Freundlich model parameter values were determined to be $K_F$ = 0.52 L/g and 1/n = 0.56. The flow-through column experiments showed that the adsorption capacities of ACF in the given experimental conditions (column length, 10 cm; inner diameter, 1.5 cm; flow rate, 0.5 and 1.0 mL/min; influent Cr(VI) concentration, 10 mg/L) were in the range of 2.35-4.20 mg/g. This study demonstrated that activated carbon fiber was effective for the removal of Cr(VI) from aqueous solutions.

Removal of Methylene Blue by Modified Carbon Prepared from the Sambucus Nigra L. plant

  • Manoochehri, Mahboobeh;Amooei, Khadijeh
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • An increase in population initiating rapid industrialization was found to consequently increase the effluents and domestic wastewater into the aquatic ecosystem. In this research the potentialities of Sambucus nigra L. (SNL) plant in the remediation of water, contaminated with methylene blue (MB), a basic dye were investigated. SNL was chemically impregnated with $KHCO_3$. Operating variables studied were pH, amount of adsorbent and contact time. In general, pH did not have any significant effect on colour removal and the highest adsorption capacity was obtained in 0.035 g MB/g-activated carbon. The Langmuir, Freundlich, Temkin and Dubinin-Radushkevich adsorption models were applied to describe the equilibrium isotherms. The adsorption isotherm data were fitted to the Temkin isotherm. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order and chemisorption pseudo-second-order kinetic models. The sorption process obeyed the pseudo-second-order kinetic model. The surface area, pores volume and diameter were assessed by the Brunauer-Emmett-Teller and Barrett-Joyner-Halenda methods. The results were compared to those from activated carbon (Merck) and an actual sample. The results indicate that SNL can be employed as a natural and eco-friendly adsorbent material for the removal of dye MB from aqueous solutions.

Kinetic Characterization of Swelling of Liquid Crystalline Phases of Glyceryl Monooleate

  • Lee, Jae-Hwi;Choi, Sung-Up;Yoon, Mi-Kyeong;Choi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.880-885
    • /
    • 2003
  • Research in this paper focuses on the kinetic evaluation of swelling of the liquid crystalline phases of glyceryl monooleate (GMO). Swelling of the lamellar and cubic liquid crystalline phases of GMO was studied using two in vitro methods, a total immersion method and a Franz cell method. The swelling of the lamellar phase and GMO having 0 %w/w initial water content was temperature dependent. The swelling ratio was greater at $20^{\circ}^C than 37^{\circ}^C$ . The water uptake increased dramatically with decreasing initial water content of the liquid crystalline phases. The swelling rates obtained using the Franz cell method with a moist nylon membrane to mimic buccal drug delivery situation were slower than the total immersion method. The swelling was studied by employing first-order and second-order swelling kinetics. The swelling of the liquid crystalline phases of GMO could be described by second-order swelling kinetics. The initial stage of the swelling (t < 4 h) followed the square root of time relationship, indicating that this model is also suitable for describing the water uptake by the liquid crystalline matrices. These results obtained from the current study demonstrate that the swelling strongly depends on temperature, the initial water content of the liquid crystalline phases and the methodology employed for measuring the swelling of GMO.

A KINETIC ANALYSIS OF ORGANIC RELEASE FROM THE AQUIFER SOIL IN RIVERBANK/BED FILTRATION

  • Ahn, Kyu-Hong;Moon, Hyung-Joon;Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.199-204
    • /
    • 2005
  • Experiments were performed to estimate the organic release from the aquifer soil in riverbank and/or riverbed filtration via a kinetic approach. Organic release was assumed as a reaction of first order regarding concentrations in both soil and water phases. The reaction rate constants were obtained by comparing the model predictions with the experimental data of organic release reaction and the equilibrium distribution of organic matter between water and soil phases. Results show that the organic release from the aquifer soil was not negligible under normal conditions in Korea reaching 4.7mg-COD/L-day. This indicates that manganese and iron start to be released from aquifer soil in the riverbank filtration in the middle reach of the Nakdong river if the travel time of the filtrate exceeds about 5 days. It was also seen that the COD of the soil organic matter was 0.89mg-COD/mg-OM and that 65% of the COD was BOD5.

Oxidative Degradation Kinetics of Tocopherols during Heating

  • Chung, Hae-Young
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.2
    • /
    • pp.115-118
    • /
    • 2007
  • Tocopherols are important lipid-phase antioxidants that are subject to heat degradation. Therefore, kinetic analyses for oxidative degradation of tocopherols as a function of temperatures and times were performed. Alpha-, gamma- and delta-tocopherols dissolved in glycerol were heated at 100${\sim}$250$^{\circ}C$ for 5~60 min. Oxidized tocopherols were analyzed by HPLC using a reversed phase ${\mu}$-Bondapak C$_{18}$-column with two kinds of elution solvent systems in a gradient mode. The degradation kinetics for tocopherols followed a first-order kinetic model. The rate of tocopherol degradation was dependent on heating temperatures. The degradation rate constants for ${\gamma}$- and ${\delta}$-tocopherols were higher than those for ${\alpha}$-tocopherol. The experimental activation energies of ${\alpha}$-, ${\gamma}$- and ${\delta}$- tocopherols were 2.51, 6.05 and 5.34 kcal/mole, respectively. The experimental activation energies for the oxidative degradation of ${\gamma}$- and ${\delta}$-tocopherols were higher than that of ${\alpha}$-tocopherol.

Photocatalytic Degradation of 3-Nitrophenol with ZnO Nanoparticles under UV Irradiation

  • Li, Jiulong;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.131-135
    • /
    • 2017
  • Zinc nitrate hexahydrate [$Zn(NO_3){\cdot}6H_2O$] and sodium hydroxide [NaOH] were used as source reagents in the preparation of ZnO nanoparticles in an aqueous solution containing deionized water and ethanol in a ratio of 2:5 (v/v). ZnO nanoparticles were heated in an electric furnace at $700^{\circ}C$ for 2 h under an atmosphere of inert argon gas. The morphological and structural properties of the nanoparticles were characterized by scanning electron microscopy (SEM) and powder X-ray diffractometry (XRD). UV-vis spectrophotometry was used to analyze the photocatalytic degradation of 3-nitrophenol with ZnO nanoparticles as photocatalyst under ultraviolet irradiation at 254 nm. Evaluation of the kinetic of the photo-catalytic degradation of 3-nitrophenol indicated that the degradation of 3-nitrophenol with ZnO nanoparticles obeyed the pseudo-first order reaction rate model.

Adsorption Characteristics of Ammonia-Nitrogen by Zeolitic Materials Synthesized from Jeju Scoria (제주 스코리아로부터 합성한 제올라이트 물질에 의한 암모니아성 질소의 흡착 특성)

  • Lee, Chang-Han;Hyun, Sung-Su;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1261-1274
    • /
    • 2020
  • The characteristics of ammonia-nitrogen (NH4+-N) adsorption by a zeolitic material synthesized from Jeju scoria using the fusion and hydrothermal method was studied. The synthetic zeolitic material (Z-SA) was identified as a Na-A zeolite by X-ray diffraction, X-ray fluorescence analysis and scanning electron microscopy images. The adsorption of NH4+-N using Jeju scoria and different types of zeolite such as the Z-SA, natural zeolite, and commercial pure zeolite (Na-A zeolite, Z-CS) was compared. The equilibrium of NH4+-N adsorption was reached within 30 min for Z-SA and Z-CS, and after 60 min for Jeju scoria and natural zeolite. The adsorption capacity of NH4+-N increased with approaching to neutral when pH was in the range of 3-7, but decreased above 7. The removal efficiency of NH4+-N increased with increasing Z-SA dosage, however, its adsorption capacity decreased. For initial NH4+-N concentrations of 10-200 mg/L at pH 7, the adsorption rate of NH4+-N was well described by the pseudo second-order kinetic model than the pseudo first-order kinetic model. The adsorption isotherm was well fitted by the Langmuir model. The maximum uptake of NH4+-N obtained from the Langmuir model decreased in the order of Z-CS (46.8 mg/g) > Z-SA (31.3 mg/g) > natural zeolite (5.6 mg/g) > Jeju scoria (0.2 mg/g).

Adsorption Kinetic and Isotherm Characteristics of Mn Ions with Zeolitic Materials Synthesized from Industrial Solid Waste (산업폐기물로부터 합성된 제올라이트 물질의 망간 이온 흡착속도 및 등온흡착 특성)

  • Choi, Jeong-Hak;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.827-835
    • /
    • 2020
  • Zeolite material having XRD peaks of Na-A zeolite in the 2θ range of 7.18 to 34.18 can be synthesized from the waste catalyst using a fusion/hydrothermal method. The adsorption rate of Mn ions by a commercial Na-A zeolite and the synthesized zeolitic material increased as the adsorption temperature increased in the range of 10 ~ 40℃. The adsorption of Mn ion were very rapid in the first 30 min and then reached to the equilibrium state after approximately 60 min. The adsorption kinetics of Mn ions by the commercial Na-A zeolite and the zeolitic material were found to be well fitted to the pseudo-2nd order kinetic model. Equilibrium data by the commercial Na-A zeolite and the zeolitic material fit the Langmuir, Koble-Corrigan, and Redlich-Peterson isotherm models well rather than Freundlich isotherm model. The removal capacity of the Mn ions by the commercial Na-A zeolite and the zeolitic material obtained from the Langmuir model was 135.2 mg/g and 128.9 mg/g at 30℃, respectively. The adsorption capacity of Mn ions by the synthesized zeolitic material was almost similar to that of commercial Na-A zeolite. The synthesized zeolitic material could be applied as an economically feasible commercial adsorbent.