• Title/Summary/Keyword: fire.explosion

Search Result 643, Processing Time 0.025 seconds

The Measurement of Fire and Explosion Properties of n-Pentadecane (노말펜타데칸의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.53-57
    • /
    • 2013
  • For the safe handling of n-pentadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-pentadecane were calculated. The lower flash points of n-pentadecane by using closed-cup tester were measured $118^{\circ}C$ and $122^{\circ}C$. The lower flash points and fire point of n-pentadecane by using open cup tester were measured $126^{\circ}C$ and $127^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-pentadecane. The experimental AIT of n-pentadecane was $195^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $118^{\circ}C$ and upper flash point $174^{\circ}C$ for n-pentadecane were 0.54 Vol.% and 6.40 Vol.%.

The Measurement of Fire and Explosion Properties of n-Hexadecane (노말헥사데칸의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.39-45
    • /
    • 2014
  • For the safe handling of n-hexadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-hexadecane were calculated. The lower flash points of n-hexadecane by using the Setaflash and the Pensky-Martens closed testers were measured $128^{\circ}C$ and $126^{\circ}C$, respectively. The lower flash points of the Tag and the Cleveland open cup testers were measured $136^{\circ}C$ and $132^{\circ}C$, respectively. The fire points of the Tag and the Cleveland open cup testers were measured $144^{\circ}C$. respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-hexadecane. The experimental AIT of n-hexadecane was $200^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $128^{\circ}C$ and upper flash point $180^{\circ}C$ for n-hexadecane were 0.42 Vol.% and 4.70 Vol.%.

A Study on Safety Assessment of Hydrogen Station (수소충전소의 안전성 평가 연구)

  • PYO, DON-YOUNG;KIM, YANG-HWA;LIM, OCK-TAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.499-504
    • /
    • 2019
  • Due to the rapid spread and low minimum ignition energy of hydrogen, rupture is highly likely to cause fire, explosion and major accidents. The self-ignition of high-pressure hydrogen is highly likely to ignite immediately when it leaks from an open space, resulting in jet fire. Results of the diffusion and leakage simulation show that jet effect occurs from the leakage source to a certain distance. And at the end of location, the vapor cloud explosion can be occurred due to the formation of hydrogen vapor clouds by built-up. In the result, it is important that depending on the time of ignition, a jet fire or a vapor cloud explosion may occur. Therefore, it is necessary to take into account jet effect by location of leakage source and establish a damage minimizing plan for the possible jet fire or vapor cloud explosion. And it is required to any kind of measurements such as an interlock system to prevent hydrogen leakage or minimize the amount of leakage when detecting leakage of gas.

The Measurement of the Explosion Limit and the Minimum Oxygen Concentration of Gasoline According to Variation in Octane Number (옥탄가 변화에 따른 가솔린의 폭발한계 및 최소산소농도 측정)

  • Kim, Won-Kil;Kim, Jung-Hun;Ryu, Jong-Woo;Choi, Jae-Wook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.618-622
    • /
    • 2017
  • Gasoline is a widely used product as a source for energy in homes, the automotive industry, and for industrial power generation, and it is also a product with a high risk of fire and explosion. In this study, to examine the risk for explosion for gasoline, PG, MG and RG, which are categorized according to octane number, were used as test specimens to measure their explosion limit according changes in oxygen concentration. The explosion limit for 21% oxygen concentration in air were confirmed to be 1.5~10.9%, 1.4~8.1%, and 1.3~7.6%, respectively, and the MOC for each of the test sample were confirmed to be 10.9%. The explosion limit measured in the test performed in this study confirmed between a 1.2%~7.6% wider explosion limit for the currently accepted MSDS for gasoline, and therefore it is considered that the results of this study can provide significant reference for preventing fires and explosions for process used gasoline.

The Characteristics of the Fatal Accidents Caused by Fire, Explosion and Asphyxiation during Welding and Flame Cutting in the Manufacturing Industry (제조업에서의 용접·용단 작업 중 화재·폭발·질식 사망사고 특성)

  • Seo, Dong-Hyun;Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.21-27
    • /
    • 2019
  • Many accidents have been occurring during welding and flame cutting work related to maintenance and repair as the domestic manufacturing facilities gradually become decrepit. However, it is not easy to find the accurate statistics and analysis data on accidents occurring during welding or flame cutting operations related to maintenance and repair of machinery and equipment. Therefore, in this study, the fatal accident cases of fire/explosion and asphyxiation that occurred during the welding and flame cutting work in the manufacturing industry were collected and their characteristics were analyzed. Then, we tried to find the connection of the accidents according to the machinery/equipment and the work content, and to provide the materials and measures that can be used to prevent the similar accidents. We collected 329 cases of the fatal accidents related to fire/explosion and leakage/contact of chemical substances in the domestic manufacturing industry during the last 10 years (2008 ~ 2017). Among them, 72 accidents occurred during welding or flame cutting were extracted and the related reports were investigated whether they occurred during usual work or unusual work. Also, the machinery/equipment and the work content related to the accidents were classified and analyzed based on the criteria. The analysis results showed that 31 cases of the fire/explosion accidents occurred during usual work and 32 cases during unusual work, and it was found that 9 cases of asphyxiation death occurred during usual work. Then, from the analysis results, the connections of the machinery/equipment and the work contents related to the accidents were schematized into a accident tree.

The Study on the Quantitative Analysis in LPG Tank's Fire and Explosion (LPG 저장탱크에서의 화재$\cdot$폭발에 관한 정량적 영향 평가에 관한 연구)

  • Bae Sung-Jin;Kim Byung-Jick
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 1999
  • Chemical plant's fire and explosion does not only damage to the chemical plants themselves but also damage to people in or near of the accident spot and the neighborhood of chemical plant. For that reason, Chemical process safety management has become important. One of safety management methods is called 'the quantitative analysis', which is used to reduce and prevent the accident. The results of the quantitative analysis could be used to arrange the equipments, evaluate the minimum safety distance, prepare the safety equipments. In this study we make the computer program to make easy to do Quantitative analysis of the accident. The output of the computer program is the magnitude of fire(pool fire and fireball) and explosion(UVCE and BLEVE) effects. We used the thermal radiation as a measure of fire magnitude and used the overpressure as a measure of explosion magnitude. In case of BLEVE, the fly distance of fragment can be evaluated. Also probit analysis was done in every case. As the case study, Buchun LPG explosion accident in Korea was analysed by the program developed. The simulation results showed that the permissible distance was 800m and probit analysis showed that 1st degree bum, 2nd degree burn, and death distances are 450, 280, 260m, respectively the simulation results showed the good agreement with the results from SAFER PROGRAM made by Dupont.

  • PDF

Prediction of Explosion Limit of Flammable Mixture by Using the Heat of Combustion (연소열을 이용한 가연성 혼합물의 폭발한계 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.19-25
    • /
    • 2006
  • Explosion limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosion limits are used to classify flammable materials according to their relative flammability. Such a classification is important for the safe handling, storage, transportation of flammable substances. In this study, the lower explosion limits(LEL) of the flammable mixtures predicted with the appropriate use of the vapor composition and the heat of combustion of the individual components which constitute mixture. The values calculated by the proposed equations were a good agreement with literature data within a few percent. From a given results, It is to be hoped that this methodology will contribute to the estimation of the explosive properties of flammable mixtures with improved accuracy and the broader application for other flammable substances.

  • PDF

Explosion Riskiness with Flying of Carbon Black Dust by Hartman (Hartman식 장치에 의한 Carbon Black 분진의 부유중 폭발 위험성 평가)

  • 현성호;김정환;이창우
    • Fire Science and Engineering
    • /
    • v.12 no.4
    • /
    • pp.13-19
    • /
    • 1998
  • We investigated the weight loss according to temperature using Thermal Gravimetric Analysis(TGA) in order to find the thermal hazard of carbon black(Hi-Black 10, Hi-Black 50L) dusts, and the properties of dust explosion in variation of the surface functional groups and specific surface area of their dust with the same particle size. Using Hartman's dust explosion apparatus which estimate dust explosion by electric ignition after making dust disperse by compressed air, dust explosion experiments have been conducted by varying concentration and size of carbon black dust. The explosion pressure of both carbon black increased as the specific surface area increased. The results indicated that Hi-Block 50L of which specific surface area was larger three to four times than that of Hi-Black 10 was much easier of dust explosion.

  • PDF