• Title/Summary/Keyword: fire-resistance test

Search Result 391, Processing Time 0.025 seconds

Design of High Strength Concrete Filled Tubular Columns For Tall Buildings

  • Liew, J.Y. Richard;Xiong, M.X.;Xiong, D.X.
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.215-221
    • /
    • 2014
  • Ultra-high strength concrete and high tensile steel are becoming very attractive materials for high-rise buildings because of the need to reduce member size and structural self-weight. However, limited test data and design guidelines are available to support the applications of high strength materials for building constructions. This paper presents significant findings from comprehensive experimental investigations on the behaviour of tubular columns in-filled with ultra-high strength concrete at ambient and elevated temperatures. A series of tests was conducted to investigate the basic mechanical properties of the high strength materials, and structural behaviour of stub columns under concentric compression, beams under moment and slender beam-columns under concentric and eccentric compression. High tensile steel with yield strength up to 780 MPa and ultra-high strength concrete with compressive cylinder strength up to 180 MPa were used to construct the test specimens. The test results were compared with the predictions using a modified Eurocode 4 approach. In addition, more than 2000 test data samples collected from literature on concrete filled steel tubes with normal and high strength materials were also analysed to formulate the design guide for implementation in practice.

The Design and Performance Test of Mold Transformer for Outdoor Pole (50 kVA 주상용 몰드변압기의 설계 및 특성평가)

  • Cho, Han-Goo;Lee, Un-Yong;HwangBo, Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF

Applicability as a Dancheong Pigment Raw Materials of Korean Low Grade Kaolin (국내산 저품위 고령토자원의 단청안료 원료로써의 활용 가능성)

  • Moon, Dong Hyeok;Han, Min Su;Cho, Hyen Goo;Kim, Myoung Nam;Kim, Jae Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.179-190
    • /
    • 2016
  • X-ray diffraction analysis, chromaticity measurement, execution and evaluation by Dancheong artisan, accelerated weathering test, and fire resistance test were conducted to test the applicability as a Dancheong pigment raw materials of Korean low grade kaolin in cultural properties. The ores that feldspar rich and composed of fine particles (< $38.1{\mu}m$) showing advantageous for the inherent purpose of the white pigment than that of high grade kaolin. And the test of whiteness, concealment force, outdoor exposure durability and fire resistance shows similar or better result than existing products (Hobun and Sanhwa jidang). In conclusion, it is expected that the use of fine feldspar rich white soil and low-grade kaolin can be used as a white pigment raw materials which have similar to better material properties and economic efficiency than existing products.

A Study on Fire Resistance of Abaca/Vinyl-ester Composites (마닐라 삼/비닐에스터 복합재료의 내화성 연구)

  • Lee, Dong-Woo;Park, Byung-Jin;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Eco-convivial composites with improved properties are essential to present polymer scenario and can be made easily by replacing partially/completely renewable materials either matrix or reinforcement along with few % of additives. In these investigations, Abaca fabric have been used as reinforcement for manufacturing of Vinyl ester composites through VARTM technique and study the effect of alkali surface treatment of abaca fabric and flame retardant additives i.e., ammonium polyphosphate (APP) with halloysite nano-clay (HNT) on mechanical and flame retardant properties. The results concluded that, surface treatment deceased the hydrophilic nature of fabric and enhanced the interfacial bonding with hydrophobic matrix and eventually increased mechanical properties slightly of developed composites. Similarly, the flame retardancy of the composites improved significantly and increases the burning time by varying the wt% of filler concentration.

Mechanical Properties of Composite Materials Composed of Structural Steel and Structural Glued Laminated Timber (구조용 강철과 구조용 집성재 복합재료 보의 역학적 성질)

  • Jang, Sangsik;Kim, Yunhui;Jang, Youngik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.300-309
    • /
    • 2009
  • The effective utilization of wood structure is encouraged to preserve natural resources and the global environment. Long-span and large-scale structures are preferred to promote demand for wood. This study attempts to develop new Fire-resistance Composite Material composed of Structural steel and Structural glued laminated timber for long-span and large-scale structures. Prior to take a fire-resistance test, compare properties of bending strength with Composite material composed of Structural steel and Structural glued laminated timber, structural steel and structural provides the stability of the structure, but the structural glued laminated timber has high value elasticity of bending. Using the Composite material will improve structural stability and Eco-friend construction environment.

Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete

  • Tufail, Muhammad;Shahzada, Khan;Gencturk, Bora;Wei, Jianqiang
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • Although concrete is a noncombustible material, high temperatures such as those experienced during a fire have a negative effect on the mechanical properties. This paper studies the effect of elevated temperatures on the mechanical properties of limestone, quartzite and granite concrete. Samples from three different concrete mixes with limestone, quartzite and granite coarse aggregates were prepared. The test samples were subjected to temperatures ranging from 25 to $650^{\circ}C$ for a duration of 2 h. Mechanical properties of concrete including the compressive and tensile strength, modulus of elasticity, and ultimate strain in compression were obtained. Effects of temperature on resistance to degradation, thermal expansion and phase compositions of the aggregates were investigated. The results indicated that the mechanical properties of concrete are largely affected from elevated temperatures and the type of coarse aggregate used. The compressive and split tensile strength, and modulus of elasticity decreased with increasing temperature, while the ultimate strain in compression increased. Concrete made of granite coarse aggregate showed higher mechanical properties at all temperatures, followed by quartzite and limestone concretes. In addition to decomposition of cement paste, the imparity in thermal expansion behavior between cement paste and aggregates, and degradation and phase decomposition (and/or transition) of aggregates under high temperature were considered as main factors impacting the mechanical properties of concrete. The novelty of this research stems from the fact that three different aggregate types are comparatively evaluated, mechanisms are systemically analyzed, and empirical relationships are established to predict the residual compressive and tensile strength, elastic modulus, and ultimate compressive strain for concretes subjected to high temperatures.

Examination on the Mounting Status of Cigar Lighter Receptacle for Vehicles and Analysis of its Tracking Characteristics (차량용 시가 잭의 장착 실태조사 및 트레킹 특성 분석)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.28-33
    • /
    • 2009
  • This study examined the mounting status of cigar lighter receptacles for vehicles and analyzed the tracking phenomenon that occurs when foreign material entered a cigar lighter receptacle to obtain data for the analysis of accident investigation. Regardless of the vehicle's output, cigar lighter receptacles are mounted in a vehicle horizontally, vertically, or at tilting or inclined angle. The tilting type cigar lighter receptacle is much easier to use but current leakage resulting from foreign materials (coffee, beverages, water, etc.) falling into the cigar lighter receptacle may cause a fire to start. This study used a vehicle battery (DC 12V) as a power supply for the tracking test and configured its circuit in the same way as that of an electrical device in a vehicle. The tracking phenomenon that occurred in the standby mode of the vehicle exhibited a fine flame and an irregular occurrence of smoke. While this tracking phenomenon was occurring, the leakage current and the reaching distance of the flame were measured to be approximately 930mA and $20{\sim}50cm$, respectively. It is thought that the resultant flame may ignite toluene, dust, cigarettes, etc. It was observed that as the tracking progressed, the internal metal socket melted and a hole was created, the surface of which was also severely carbonized. In addition, the electrical resistance of the carbonized conductive path was measured to be approximately $30{\Omega}$. It is thought that this much resistance may cause local heating when leakage current flows and could ignite any nearby flammable material.

A Study on the Spalling Properties of High-Performance Concrete with the Kinds of Aggregate and Polypropylene Fiber Contents (골재종류 및 폴리프로필렌 섬유 혼입률 변화에 따른 고성능 콘크리트의 폭열 특성에 관한 연구)

  • 한천구;양성환;이병렬;황인성
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.69-77
    • /
    • 1999
  • A spalling is defined as the damages of concrete exposed to high temperature during the fire by causing cracks and localized bursting of small pieces of concrete. It is reported that spalling is caused by the vapor pressure and polypropylene(PP) fiber has an important role in protecting from spalling. This paper is a study on the properties and spalling resistance of high-performance concrete with the kinds of aggregate and the contents of PP fiber. According to the experimental results, concrete contained no PP fiber take place in the form of the surface spalling and the failure of specimenns after fire test regardless of the kinds of aggregate. Concrete contained more than 0.05% of PP fiber with the aggregate of basalt does not take place the spalling, while the concrete using granite and limestone does the surface spalling. It is found that residual compressive strength after exposed at high temperature has 50~60% of its original strength. Although specimens after exposed at high temperature is cured at water for 28days, they do not recover their original strength.

Rheological Characteristics of Fiber-Reinforced High-Strength AFR Concrete (섬유보강 고강도 내화콘크리트의 레올로지 특성 분석)

  • Choi, Sun-Mi;Lee, Bum-Sik;Bae, Kee-Sun;Kim, Sang-Yun;Park, Su-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.543-544
    • /
    • 2009
  • The fiber(NY, PP) known to the effective material on improvement of the fire-resistance of HSC(high strength concrete) has a difference for fluidity according to the variation of a length and contents of fiber. In this study, to analyze the effect of a length and contents of the fiber on the fluidity of HSC and fheological characteristics, we calculated a viscosity of mortar by mini slump-flow, simple V-lot and viscometer. With the test results, the fluidity characteristic showed a moderate difference by a length and contents of the fiber, but showed a significant difference by increase of the fiber contents. ${\ast}$ AFR Concrete (Advenced Fire Resistant Concrete)

  • PDF

A Study on Compressive Strength of Centrally-Loaded Steel Columns at Elevated Temperatures (중심축 하중을 받는 고온상태 강재기둥의 압축강도에 관한 연구)

  • Yoon, Jong Hwi;Lee, Chy Hyoung;Yoon, Sung Kee
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.253-261
    • /
    • 2016
  • In order to evaluate compressive strength of centrally-loaded steel column at elevated temperature, new FE analysis techniques and assumptions of model were applied in this study. It also includes comparison with the existing studies, and a new design equation for centrally-loaded steel column at elevated temperature was proposed. The proposed equation was the most accurate of the three design equations(EC3, AISC, proposed equation) when comparing with the coefficient of determination on the simulated results and test results.