• Title/Summary/Keyword: fire-dynamics

Search Result 312, Processing Time 0.023 seconds

Assessment of the Habitability for a Cabinet Fire in the Main Control Room of Nuclear Power Plant using Sensitivity Analysis (민감도 분석을 이용한 원전 주제어실의 케비닛 화재에 대한 거주성 평가)

  • Han, Ho-Sik;Lee, Jae-Ou;Hwang, Cheol-Hong;Kim, Joosung;Lee, Sangkyu
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.52-60
    • /
    • 2017
  • Numerical simulations were performed to evaluate the habitability of an operator for a cabinet fire in the main control room of a nuclear power plant presented in NUREG-1934. To this end, a Fire Dynamics Simulator (FDS), as a representative fire model, was used. As the criteria for determining the habitability of operator, toxic products, such as CO, were also considered, as well as radiative heat flux, upper layer temperature, smoke layer height, and optical density of smoke. As a result, the probabilities of exceeding the criteria for habitability were evaluated through the sensitivity analysis of the major input parameters and the uncertainty analysis of fire model for various fire scenarios, based on V&V (Verification and Validation). Sensitivity analyses of the maximum heat release rate, CO and soot yields, showed that the habitable time and the limit criterion, which determined the habitability, could be changed. The present methodology will be a realistic alternative to enhancing the reliability for a habitability evaluation in the main control room using uncertain information of cabinet fires.

Dynamics of the Plant Community Structure and Soil Properties in the Burned and Unburned Areas of the Mt. Ch’olye-san (초례산의 산화지와 비산화지의 식물군집구조 및 토양성분의 동태)

  • Sim, Hak-Bo;Woen Kim
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.417-430
    • /
    • 1996
  • This study was conducted to investigate the developmental process of plant community during the secondary succession and the dynamics of soil properties in the burned and unburned areas of Mt. Ch’oly-san. Owing to the forest fire occurred on April, 1989, the red pine(Pinus densiflora) forest and its floor vegetation were burned down. The floristic composition of burned and unburned areas were composed of 53 and 49 species of vascular plants, respectively. The dominant species based on SDR4 of the burned sites were lespedeza cyrtobotrya (89.62), Miscanthus sinensis var. purpurascens (62.50), and Carex humilis (58.73), Quercus serrata (43.33). In contrast, Pinus densiflora (83.56), Lespedeza cyrtobotrya (55.57), Miscanthus sinensis var. purpurascens (51.88) and Carex humilis (50.41) were dominant in the unburned area. The biological spectra showed the $H-D_1-R_5-e$ type in both the burned and unburned areas. The indices of similarity ($CC_S$) between the two areas were 0.74. Degree of succession (DS) was 604 in the burned area and 802 in the unburned area. From these facts, it is assumed that the succession is rapidly progressing because of the recovery of vegetation. The species diversity ($\={H}$) and evenness index(C) in the burned and unburned areas were 0.15 and 0.18, respectively. Red pine tree did not resprout after scorch by the forest fire, but Lespedeza, Quercus, Rhododendron, Albizzia, and Zanthoxylum resprouted from the roots and trunks after the forest fire. It seems that these species are the fire-resistant species. Soil properties such as soil pH, content of organic matter, available phosphous, total nitrogen, tatal carbon, exchangeable potssium, sodium, calcium, and magnesium increased due to forest fire. These results suggest the intensity of forest fire in the study area was relatively weak. Monthly changes of soil properties were of little significance except for some cases.

  • PDF

A Study on Fire ventilation design of road tunnel (도로터널에서의 화재환기 설계에 관한 연구)

  • Kim, Myung-Bae;Choi, Byung-Il;Choi, Jun-Seok;Han, Yong-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.129-139
    • /
    • 2004
  • The several assumptions and design parameters to determine the ventilation rate in tunnel ventilation system were examined. In longitudinal ventilating tunnel, the ventilation rate has been determined by the critical velocity above which the smoke propagation to the upstream of ventilating air is prevented. Based upon the examination of assumptions and experimental results, we suggested the improved method to determine the critical velocity. In transverse ventilating tunnel, we found that the ventilation rate has been determined in accordance with the custom rather than fire-smoke dynamics such as the critical velocity in the longitudinal ventilating tunnel. It is because the ventilation rate in the transverse ventilation system has been determined by considering only the ventilation of contaminant by vehicle. To improve the ventilation design parameters based upon the fire-smoke dynamics, we conducted model tunnel fire experiments. From the experimental results, smoke propagating distance and smoke filling were suggested as the design parameter to determine the ventilation rate in transverse ventilating tunnel. And tunnels in Europe designed by the custom is found to have the dangerous nature in view of fire safety.

  • PDF

Sensitivity analysis of input variables to establish fire damage thresholds for redundant electrical panels

  • Kim, Byeongjun;Lee, Jaiho;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.84-96
    • /
    • 2022
  • In the worst case, a temporary ignition source (also known as transient combustibles) between two electrical panels can damage both panels. Mitigation strategies for electrical panel fires were previously developed using fire modeling and risk analysis. However, since they do not comply with deterministic fire protection requirements, it is necessary to analyze the boundary values at which combustibles may damage targets depending on various factors. In the present study, a sensitivity analysis of input variables related to the damage threshold of two electrical panels was performed for dimensionless geometry using a Fire Dynamics Simulator (FDS). A new methodology using a damage evaluation map was developed to assess the damage of the electrical panel. The input variables were the distance between the electrical panels, the vertical height of the fuel, the size of the fire, the wind speed and the wind direction. The heat flux was determined to increase as the vertical distance between the fuel and the panel decreased, and the largest heat flux was predicted when the vertical separation distance divided by one half flame length was 0.3-0.5. As the distance between the panels increases, the heat flux decreases according to the power law, and damage can be avoided when the distance between the fuel and the panel is twice the length of the panel. When the wind direction is east and south, to avoid damage to the electrical panel the distance must be increased by 1.5 times compared to no wind. The present scale model can be applied to any configuration where combustibles are located between two electrical panels, and can provide useful guidance for the design of redundant electrical panels.

Evaluation of the Prediction Performance of FDS Combustion Models for the CO Concentration of Gas Fires in a Compartment (구획실 내 가스연료 화재의 CO 농도에 대한 FDS 연소모델의 예측성능 평가)

  • Baek, Bitna;Oh, Chang Bo;Hwang, Chel-Hong;Yun, Hong-Seok
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • The prediction performance of combustion models in the Fire Dynamics Simulator (FDS) were evaluated by comparing with experiment for compartment propane gas fires. The mixture fraction model in the FDS v5.5.3 and Eddy Dissipation Concept (EDC) model in the FDS v6.6.3 were adopted in the simulations. Four chemical reaction mechanisms, such as 1-step Mixing Controlled, 2-step Mixing Controlled, 3-step Mixing Controlled and 3-step Mixed (Mixing Controlled + finite chemical reactions) reactions, were implemented in the EDC model. The simulation results with each combustion model showed similar level for the temperature inside the compartment. The prediction performance of FDS with each combustion model showed significant differences for the CO concentration while no distinguished differences were identified for the $O_2$ and $CO_2$ concentrations. The EDC 3-step Mixing Controlled largely over-predicted the CO concentration obtained by experiment and the mixture fraction model under-predicted the experiment slightly. The EDC 3-step Mixed showed the best prediction performance for the CO concentration and the EDC 2-step Mixing Controlled also predicted the CO concentration reasonably. The EDC 1-step Mixing Controlled significantly under-predict the experimental CO concentration when the previously suggested CO yield was adopted. The FDS simulation with the EDC 1-step Mixing Controlled showed difficulties in predicting the $CO_2$ concentration when the CO yield was modified to predict the CO concentration reasonably.

Fire Protection System for Ubiquitous Environment (유비쿼터스 환경을 위한 소방시스템)

  • Kang, Won-Chan;Kim, Nam-Oh;Min, Wan-Ki;Shin, Suck-Doo;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.141-147
    • /
    • 2005
  • In this paper, We are going to propose the fire protection system with using CAN(Controller Area Network). The larger, higher and deeper buildings are, the more dangerous people are when fire happens. We should be aware of the problems of prior fire protection system. Therefore, we construct embedded system based on CAN communication that is capable of N:N communication, and build independent fire protection system. If the fire is occurred on the building, the problem is that how fast we can detect the fire and put off it by using available system. this is major factor that reduces damage of our wealth. therefore in this studies We would like to design more stable system than current system. this system that is based on CAN communication which is available N:N communication constructs and is designed to compensate for each fault so that our aim is to reduce the line of system and cost of installation and to suppose future type fire protection system. We are simulated by NIST FDS(Fire Dynamics Simulator) to prove the efficiency of this system.

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

  • Gupta, Vinny;Hidalgo, Juan P.;Lange, David;Cowlard, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.345-364
    • /
    • 2021
  • Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.

Characteristics of Thermal and Fluid Flows for Different Fire Locations in Underground Combined Cycle Power Plant (화원 위치에 따른 지하 복합 발전 플랜트 내 열유동 특성 연구)

  • Sung, Kun Hyuk;Bang, Joo Won;Lee, Soyeong;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.716-722
    • /
    • 2017
  • The present study numerically investigates the effect of obstacles located in the trajectory of fire plume flow on heat flow characteristics by using Fire Dynamics Simulation (FDS) software in an underground combined cycle power plant (CCPP). Fire size is taken as 10 MW and two different locations of fire source are selected depending on the presence of an obstacle. As the results, when the obstacle is in the trajectory of fire plume, hot plume arrives at the ceiling about 5 times slower in the upper of the fire in comparison to the results without obstacle. In addition, the average propagation time of ceiling jet increases by about 70 % with the distance from the ceiling in the upper of the fire, and it increases mainly about 4 times at the distance of 10 m. Consequently, it is noted that the analysis of heat flow characteristics in the underground CCPP considering fire scenarios is essential to develop the fire detection system for initial response on evacuation and disaster management.

Numerical Study on the Change in Fire Characteristic as Operating Water-mist in Under-ventilated Compartments (워터미스트 작동에 의한 산소저공급 실내화재 특성 변화에 대한 수치해석 연구)

  • Ko, G.H.;Lee, S.H.;Ryou, H.S.
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.156-161
    • /
    • 2008
  • The present article reports a numerical study on the fire characteristic change by water-mist in under-ventilated compartments. The natural gas and heptane pool fires are used as fire sources, which are located in the bottom center of the 2/5 reduced-scaled model of the ISO 9705 standard room. The fire modeling using the FDS (Fire Dynamics Simulator) is validated by comparison with previously published experimental results. For temperature and combustion gas concentrations at two positions located in the upper layer of compartment, the predicted results with and without water-mist are compared each other. The results show that under the water-mist operation, the predicted temperature and carbon monoxide concentration reduce as $300{\sim}400^{\circ}C$ and about 20%, respectively, compared to those without water-mist.

  • PDF

Computational study of road tunnel exposure to severe wind conditions

  • Muhic, Simon;Mazej, Mitja
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.185-197
    • /
    • 2014
  • Ventilation and fire safety design in road tunnels are one of the most complex issues that need to be carefully considered and analysed in the designing stage of any potential upgrade of ventilation and other fire safety systems in tunnels. Placement road tunnels space has an important influence on fire safety, especially when considering the effect of adverse wind conditions that significantly influence ventilation characteristics. The appropriate analysis of fire and smoke control is almost impossible without the use of modern simulation tools (e.g., CFD) due to a large number of influential parameters and consequently extensive data. The impact of the strong wind is briefly presented in this paper in the case of a longitudinally ventilated road tunnel Kastelec, which is exposed to various severe wind conditions that significantly influence its fire safety. The possibility of using CFD simulations in the analysis of the tunnel placement in space terms negative effect of wind influence on the tunnel ventilation is clearly indicated.