• Title/Summary/Keyword: fire resources

Search Result 297, Processing Time 0.028 seconds

Experimental investigation on thermal behavior, sound absorption, and flammability of natural fibre polymer composites

  • Ravi Kumar, B.;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.613-618
    • /
    • 2020
  • Exhausting oil resources and increasing pollution around the world are forcing researchers to look for new, renewable, biodegradable materials to lead sustainable development. The use of fiber reinforced composites based on natural fibres has increasingly begun as prospective materials for various engineering applications in the automotive, rail, construction and aerospace industries. The natural fiber chosen to make the composite material is plant-based fibre, e.g. jute fibre, and hemp fibre. Thermosetting polymer based Epoxy (LY556) was utilized as matrix material and The composites were produced using hand lay-up technique. The fabricated composites were tested for acoustic testing, thermo-gravimetric analysis (TGA) and flammability testing to asses sound absorption, thermal decomposition and fire resistivity of the structures. Hemp fibre composites have shown improved thermal stability over Jute fibre composites. However, the fire resistance characteristics of jute fibre composites are better as compared to hemp fibre composites. The sound absorption coefficient of composites was found to enhance with the increase of frequency.

A Study on the Quality Test of Grinding Disk Assembly for Crushing Material in Secondary Battery (이차전지 원료 해쇄용 Grinding Disc Assembly 품질 시험에 관한 연구)

  • Sang-Pil Han;Dong-Hyuk Lee
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.42-46
    • /
    • 2023
  • Currently, fossil resources are depleting rapidly. We are looking for energy to replace fossil fuels. They are trying to use electricity to replace internal combustion locomotives. Secondary battery raw materials and chemical additives are pulverized by the high-speed rotation of the grinding disc of the Classifier Separator Mill. Grinding Disc Assembly requires characteristics to withstand abrasion, corrosion, high-speed rotational force and impact. Domestic and foreign grinding discs were analyzed through abrasion resistance, hardness, bending strength, and tensile adhesion strength tests.

A Study on the Development of a Fire Site Risk Prediction Model based on Initial Information using Big Data Analysis (빅데이터 분석을 활용한 초기 정보 기반 화재현장 위험도 예측 모델 개발 연구)

  • Kim, Do Hyoung;Jo, Byung wan
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.245-253
    • /
    • 2021
  • Purpose: This study develops a risk prediction model that predicts the risk of a fire site by using initial information such as building information and reporter acquisition information, and supports effective mobilization of fire fighting resources and the establishment of damage minimization strategies for appropriate responses in the early stages of a disaster. Method: In order to identify the variables related to the fire damage scale on the fire statistics data, a correlation analysis between variables was performed using a machine learning algorithm to examine predictability, and a learning data set was constructed through preprocessing such as data standardization and discretization. Using this, we tested a plurality of machine learning algorithms, which are evaluated as having high prediction accuracy, and developed a risk prediction model applying the algorithm with the highest accuracy. Result: As a result of the machine learning algorithm performance test, the accuracy of the random forest algorithm was the highest, and it was confirmed that the accuracy of the intermediate value was relatively high for the risk class. Conclusion: The accuracy of the prediction model was limited due to the bias of the damage scale data in the fire statistics, and data refinement by matching data and supplementing the missing values was necessary to improve the predictive model performance.

A study on the fire resistance characteristics of mud flat mortar (갯벌모르타르의 내화성능에 관한 실험적 연구)

  • Yang, Seonghwan;Kim, Huidoo
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.589-596
    • /
    • 2015
  • As urbanization progressed along with quantitative expansion of the construction industry, concrete has developed diversely as a material that is the most extensively used in the construction industry. However, aggregate resources that are an essential element of concrete production are gradually being depleted and the phenomenon of aggregate shortage has been intensifying due to the reinforcement of regulations on environmental issues. Therefore, in the present study, environment friendly mortar was made by replacing aggregate with mud that is dumped when dredging sand is dumped. To identify the dynamic characteristics of the mortar and to identify its fire resistance efficiency, the mortar was heated and its residual compressive strength was measured. In the results, the residual compressive strength values of MM1, MM2, and MM3 were 45%, 95%, and 57.7% respectively and the mix MM2 showed the highest fire resistance efficiency.

Prediction of Poor Contact by Analysis of Electrical Signal and Thermal Characteristics (전기적 신호와 열적특성 분석에 의한 접촉불량 예측)

  • Lee, Heung-Su;Kim, Doo-Hyun;Kim, Sung-Chul;Kim, Yoon-Bok
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.36-41
    • /
    • 2012
  • Electrical Connections often cause fires due to poor contact. Occurrence rate of these fires tends to increase annually. The reason why poor contacts occur is often because it is the low mechanical pressure at the contact points. A typical connection method using mechanical pressure is a screw terminal type. This study reviewed these poor contact cases in the screw terminals. In order to get reproduction of such cases, two types of experiments were conducted. the first one was conducted under the normal contact condition, and the other one was conducted under the poor contact condition that screw terminal of breaker was loosen and did not meet the requirements of toque value. In both types of experiments, compulsory vibration was adopted as a variable to aggravate poor contacts. Each of various current values(4.5A, 9.0A, 13.5A) is input. In these experiments, relationships of a contact, electrical signal such as current and electric pulse by ZCT and thermal characteristics according to vibration effect are analyzed. The suggested data and results in this study provide the useful resources helping to investigate fires due to poor contact, and they develop the detector for poor contact and finally reduce the electrical fire occurrence rate.

A Study on the Rehabilitation Room of Firefighters at Disaster Spot (재난현장 소방공무원의 회복실에 관한 연구)

  • Chae, Jin;Yim, Dong-Kyun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.116-125
    • /
    • 2020
  • This study intends to provide a model for the establishment of a rehabilitation room for the safety and rehabilitation of firefighters by proposing a basis for the establishment of a firefighter rehabilitation room at disaster sites. To achieve the research objectives, a questionnaire, frequency analysis, and variance analysis were conducted to assess the effectiveness of rehabilitation rooms for firefighters. Based on the results of the research, the policy suggestions for operating an effective rehabilitation room are as follows. An organization of the operation of the rehabilitation room should be established at each firefighting headquarters, and human resources must be secured for the operation of the rehabilitation room. In addition, detailed operating standards such as the operation contents of the rehabilitation room's operation manager and its operator, as well as its operation procedures should be prepared. Additionally, training to improve the rehabilitation room and its understanding is needed.

Potentials for reforestation on forest fire-damaged slope land by transplanting Pinus densiflora seedlings inoculated artificially with Pisolithus tinctorius (모래밭버섯 균근균을 인공접종한 소나무를 이용한 산불피해지 비탈면의 녹화가능성)

  • Jung, Joo Hae;Lee, Jong Kyu;Lee, Sang Yong
    • Journal of Forest and Environmental Science
    • /
    • v.19 no.1
    • /
    • pp.99-107
    • /
    • 2003
  • For the investigation of the potentials of ectomycorrhizal (ECM) fungi on pine seedlings for reforestation on fire-damaged forest lands, six months old seedlings of Pinus densiflora, which were artificially inoculated or non-inoculated with Pisolithus tinctorius, were transplanted into the fire-damaged forest land. Seedling mortality was recorded as 3.5% for the seedlings inoculated with P. tinctorius at three months after transplanting, while it was 70.5% for the non-inoculated seedlings. Mycorrhizal root formation was shown as typically Y-branched type, and thier rate was 82% for inoculated seedlings, but it was 52% for non-inoculated. Comaprisons in seedling height, fresh weight, and dry weight between pine seedlings inoculated or non-inoculated with P. tinctorius at every 3 months till 9 months after transplanting showed that the inoculated seedlings were much better in all criteria as compared to the non-inoculated at the level of 63%, 35%, 18% in seedling height, 206%, 114%, 70% in fresh weight, and 187%, 109%, 63% in dry weight, respectively. The percentages were decreased by the elapse of time, which indicate that P. tinctorius give a growth-stimulating effects on seedlings at the early stage. T/R ratio for inoculated and non-inoculated seedlings after 9 months was 1.75 and 1.90, respectively.

  • PDF

Estimation of Canopy Fuel Characteristics for Pinus densiflora Stands Using Diameter Distribution Models: Forest Managed Stands and Unmanaged Stands (직경분포모형을 이용한 소나무림의 수관연료특성 예측: 산림시업지 임분과 비시업지 임분에서)

  • Lee, Sun Joo;Kim, Sung Yong;Lee, Byung Doo;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.412-421
    • /
    • 2018
  • The objective of this study was to analyze the effects of forest management activities on canopy fuel characteristics for Pinus densiflora stands in South Korea. We used 1,085 managed stands data and 349 unmanaged stands data of the National Forest Inventory for this study, and it was estimated by using the Weibull function for the growth of stand and canopy fuel characteristics. Comparing the canopy fuel characteristics for the managed stands and unmanaged stands shows that the average canopy fuel load is about 14% higher than that of managed stands, and the canopy bulk density is also approximately 16% higher. The results of comparing growth projections for 40 years, 50 years and 60 years with the Weibull function are as follows: Over time, managed stands was predicted the maximum number of medium and large class diameter, while unmanaged stands was predicted maximum number of small and medium class diameter. From a fire fuel perspective, unmanaged stands are predicted to be of the type small class diameter and high density, which is a good condition for crown fire. In addition, Canopy fuel load, Canopy bulk density is relatively higher than managed stands, indicating that the possibility of high crown fire hazard.

Investigation on Fire Resistance of Mortar Made of Powder Type Sericite (분말형 견운모를 혼입한 모르타르의 내화성능 연구)

  • Park, Ji-Yeon;Kim, So-I;Kim, Seong-Ha;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • Powder type sericite has been actively researched in the area of chemistry and mineralogy in terms of waste recycling. It is a material that can be obtained relatively inexpensively with a low thermal conductivity like general mica, so in order to improve the thermal conductivity of the mortar, powder type sericite was used in this work. Compressive strengths of mortar before and after high temperature exposure were compared and evaluated to determine the fire resistance of mortar with powder type sericite. According to the experimental results, it was found that the compressive strength decreased when powder type sericite was replaced with cement, but the decrease in compressive strength with the increasing amount of powder type sericite was insignificant. When powder type sericite was incorporated, the thermal conductivity decreased, and the residual strengths of the mortar specimens which were heat treated at 600℃, 900℃, and 1,200℃ were higher than that of plain mortar. From the comprehensive evaluation of the experimental results, it can be concluded that the powder type sericite has the potential to be used as a refractory material for cement composites.

Deadlock Analysis and Control of FMS's Using Siphon property (Siphon 특성을 이용한 FMS의 Deadlock 해석과 제어)

  • Kim, Jung-Chul;Kim, Jin-Kwon;Hwang, Hyung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.677-682
    • /
    • 2007
  • Concurrent competition for finite resources by multiple parts in flexible manufacturing systems(FMS's) and inappropriate initial marking or net structure of Petri net with share resources results in deadlock. This is an important issue to be addressed in the operation of the systems. Deadlock is a system state so that some working processes can never be finished. Deadlock situation is due to a wrong resource allocation policy. In fact, behind a deadlock problem there is a circular wait situation for a set of resources. Deadlock can disable an entire system and make automated operation impossible. Particularly, an unmanned system cannot recover from such a status and a set of jobs waits indefinitely for never-to-be-released resources. In this paper, we proposed a deadlock prevention method using siphon and trap of Petri net. It is based on potential deadlock which are siphon that eventually became empty. This method prevents the deadlock by the control of transition fire and initial marking in the Petri net. An given example of FMS is shown to illustrate our results with deadlock-free.