• 제목/요약/키워드: finite-horizon case

검색결과 14건 처리시간 0.018초

Constrained Robust Model Predictive Control with Enlarged Stabilizable Region

  • Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1-4
    • /
    • 2004
  • The dual-mode strategy has been adopted in many constrained MPC methods. The size of stabilizable regions of states of MPC methods depends on the size of underlying feasible and positively invariant set and number of control moves. These results, however, could be conservative because the definition of positive invariance does not allow temporal leave of states from the set, In this paper, a concept of periodic invariance is introduced in which states are allowed to leave a set temporarily but return into the set in finite steps. The periodic invariance can defined with respect to sets of different state feedback gains. These facts make it possible for the periodically invariant sets to considerably larger than ordinary invariant sets. The periodic invariance can be defined for systems with polyhedral model uncertainties. We derive a MPC method based on these periodically invariant sets. Some numerical examples are given to show that the use of periodic invariance yields considerably larger stabilizable sets than the case of using ordinary invariance.

  • PDF

Input Constrained Robust Model Predictive Control with Enlarged Stabilizable Region

  • Lee, Young-Il
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.502-507
    • /
    • 2005
  • The dual-mode strategy has been adopted in many constrained MPC (Model Predictive Control) methods. The size of stabilizable regions of states of MPC methods depends on the size of underlying feasible and positively invariant sets and the number of control moves. The results, however, may perhaps be conservative because the definition of positive invariance does not allow temporal departure of states from the set. In this paper, a concept of periodic invariance is introduced in which states are allowed to leave a set temporarily but return into the set in finite time steps. The periodic invariance can be defined with respect to sets of different state feedback gains. These facts make it possible for the periodically invariant sets to be considerably larger than ordinary invariant sets. The periodic invariance can be defined for systems with polyhedral model uncertainties. We derive a MPC method based on these periodically invariant sets. Some numerical examples are given to show that the use of periodic invariance yields considerably larger stabilizable sets than the case of using ordinary invariance.

할인구매옵션을 고려한 동적 재생산계획문제 (A Dynamic Remanufacturing Planning Problem with Discount Purchasing Options)

  • 이운식
    • 한국경영과학회지
    • /
    • 제34권3호
    • /
    • pp.71-84
    • /
    • 2009
  • This paper considers a remanufacturing and purchasing planning problem, in which either used products(or wastes) are remanufactured or remanufactured products(or final products) are purchased to satisfy dynamic demands of remanufactured products over a discrete and finite time horizon. Also, as remanufactured products are purchased more than or equal to a special quantity Q, a discount price policy is applied. The problem assumes that the related cost(remanufacturing and inventory holding costs of used products, and the purchasing and inventory holding costs of remanufactured products) functions are concave and backlogging is not allowed. The objective of this paper is to determine the optimal remanufacturing and purchasing policy that minimizes the total cost to satisfy dynamic demands of remanufactured products. This paper characterizes the properties of the optimal policy and then, based on these properties, presents a dynamic programming algorithm to find the optimal policy. Also, a network-based procedure is proposed for the case of a large quantity of low cost used products. A numerical example is then presented to demonstrate the procedure of the proposed algorithm.

Robust Predictive Feedback Control for Constrained Systems

  • Giovanini, Leonardo;Grimble, Michael
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.407-422
    • /
    • 2004
  • A new method for the design of predictive controllers for SISO systems is presented. The proposed technique allows uncertainties and constraints to be concluded in the design of the control law. The goal is to design, at each sample instant, a predictive feedback control law that minimizes a performance measure and guarantees of constraints are satisfied for a set of models that describes the system to be controlled. The predictive controller consists of a finite horizon parametric-optimization problem with an additional constraint over the manipulated variable behavior. This is an end-constraint based approach that ensures the exponential stability of the closed-loop system. The inclusion of this additional constraint, in the on-line optimization algorithm, enables robust stability properties to be demonstrated for the closed-loop system. This is the case even though constraints and disturbances are present. Finally, simulation results are presented using a nonlinear continuous stirred tank reactor model.