• Title/Summary/Keyword: finite-elements methods

Search Result 330, Processing Time 0.217 seconds

Topology optimization of Reissner-Mindlin plates using multi-material discrete shear gap method

  • Minh-Ngoc Nguyen;Wonsik Jung;Soomi Shin;Joowon Kang;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.365-374
    • /
    • 2023
  • This paper presents a new scheme for constructing locking-free finite elements in thick and thin plates, called Discrete Shear Gap element (DSG), using multiphase material topology optimization for triangular elements of Reissner-Mindlin plates. Besides, common methods are also presented in this article, such as quadrilateral element (Q4) and reduced integration method. Moreover, when the plate gets too thin, the transverse shear-locking problem arises. To avoid that phenomenon, the stabilized discrete shear gap technique is utilized in the DSG3 system stiffness matrix formulation. The accuracy and efficiency of DSG are demonstrated by the numerical examples, and many superior properties are presented, such as being a strong competitor to the common kind of Q4 elements in the static topology optimization and its computed results are confirmed against those derived from the three-node triangular element, and other existing solutions.

MRI Content-Adaptive Finite Element Mesh Generation Toolbox

  • Lee W.H.;Kim T.S.;Cho M.H.;Lee S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.110-116
    • /
    • 2006
  • Finite element method (FEM) provides several advantages over other numerical methods such as boundary element method, since it allows truly volumetric analysis and incorporation of realistic electrical conductivity values. Finite element mesh generation is the first requirement in such in FEM to represent the volumetric domain of interest with numerous finite elements accurately. However, conventional mesh generators and approaches offered by commercial packages do not generate meshes that are content-adaptive to the contents of given images. In this paper, we present software that has been implemented to generate content-adaptive finite element meshes (cMESHes) based on the contents of MR images. The software offers various computational tools for cMESH generation from multi-slice MR images. The software named as the Content-adaptive FE Mesh Generation Toolbox runs under the commercially available technical computation software called Matlab. The major routines in the toolbox include anisotropic filtering of MR images, feature map generation, content-adaptive node generation, Delaunay tessellation, and MRI segmentation for the head conductivity modeling. The presented tools should be useful to researchers who wish to generate efficient mesh models from a set of MR images. The toolbox is available upon request made to the Functional and Metabolic Imaging Center or Bio-imaging Laboratory at Kyung Hee University in Korea.

A Study on Improving the Accuracy of Finite Element Modeling Using System Identification Technique (S. I. 기법을 이용한 유한요소모델의 신뢰도 제고에 관한 연구)

  • 양경택
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.149-160
    • /
    • 1997
  • Mechanical structures are composed of substructures connected by joints and boundary elements. While the finite element representation of plain substructures is well developed and reliable, joints have a lot of uncertainties in being accurately modelled and affect dynamic behavior of a total system. In order to improve the accuracy of a finite element model, a new method is proposed, in which reduced finite element model is combined with a system identification technique. After substructures except joints are modelled with finite element method and joint properties are represented by parameter states, non-linear state equation is derived in which parameter states are multiplied by physical states such as displacements and velocities. So the joint parameter identification is transformed into non-linear state estimation problem. The methods are tested and discussed numerically and the feasibility for physical application has been demonstrated through two example structures.

  • PDF

THE SINGULARITIES FOR BIHARMONIC PROBLEM WITH CORNER SINGULARITIES

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • v.36 no.5
    • /
    • pp.583-591
    • /
    • 2020
  • In [8, 9] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with corner singularities, compute the finite element solutions using standard Finite Element Methods and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. The error analysis was given in [5]. In their approaches, the singular functions and the extraction formula which give the stress intensity factor are the basic elements. In this paper we consider the biharmonic problems with the cramped and/or simply supported boundary conditions and get the singular functions and its duals and find properties of them, which are the cornerstones of the approaches of [8, 9, 10].

2차원 강소성 유한요소해석에서의 안정성 및 효율성 향상에 관한 연구

  • 박근;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.195-199
    • /
    • 1993
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode, shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two dimensional rigid-plastic finite element method using various type of elements and numerical integration schemes. AS metal forming examples, upsetting and backward extrusion are taken for comparison among the methods : various element types and numerical integration schemes. comparison is made in terms of stability and efficiency. As a result, it has been shown that the finite element computation is stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF

Crack propagation and deviation in bi-materials under thermo-mechanical loading

  • Chama, Mourad;Boutabout, Benali;Lousdad, Abdelkader;Bensmain, Wafa;Bouiadjra, Bel Abbes Bachir
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.441-457
    • /
    • 2014
  • This paper presents a finite element based numerical model to solve two dimensional bi-material problems. A bi-material beam consisting of two phase materials ceramic and metal is modelled by finite element method. The beam is subjected simultaneously to mechanical and thermal loadings. The main objective of this study is the analysis of crack deviation located in the brittle material near the interface. The effect of temperature gradient, the residual stresses and applied loads on crack initiation, propagation and deviation are examined and highlighted.

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.

Finite element implementation of a steel-concrete bond law for nonlinear analysis of beam-column joints subjected to earthquake type loading

  • Fleury, F.;Reynouard, J.M.;Merabet, O.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 1999
  • Realistic steel-concrete bond/slip relationships proposed in the literature are usually uniaxial. They are based on phenomenological theories of deformation and degradation mechanisms, and various pull-out tests. These relationships are usually implemented using different analytical methods for solving the differential equations of bond along the anchored portion, for particular situations. This paper justifies the concepts, and points out the assumptions underlying the construction and use of uniaxial bond laws. A finite element implementation is proposed using 2-D membrane elements. An application example on an interior beam-column joint illustrates the possibilities of this approach.

Analysis of a coupled waveguide structure using the edge element method (변유한요소법을 이용한 결합구조를 갖는 도파관 구조의 해석)

  • Kim, Young-Tae;Kwon, Jin-Ho;Ahn, Dal;Park, Jun-Seok;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1117-1119
    • /
    • 1999
  • An edge finite element method is applied to calculate the field distribution of a coupled waveguide structure. We compares a node based finite element method with the edge element one. For 2-d eigenvalue problems of waveguide structures, the former generates spurious eigenmodes, but the latter dose not. Using an simple rectangular waveguide, we implement both methods to obtain some results of field computation in waveguide. The paper shows that the finite element method using edge elements succeeds in suppressing spurious solutions.

  • PDF

An Analysis of Hemisphere-cylindrical Shell Structure by Transfer Matrix Method (전달행렬법에 의한 반구 원통형 쉘구조의 해석)

  • 김용희;이윤영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.115-125
    • /
    • 2003
  • Shell structures are widely used in a variety of engineering application, and mathematical solution of shell structures are available only for a few special cases. The solution of shell structure is more complicated when it has such condition as winkler foundation, other problems. In this study many simplified methods (analogy of beam on elastic foudation, finite element method and transfer matrix method) are applied to analyze a hemisphere-cylindrical shell structures on elastic foundation. And the transfer matrix method is extensively used for the structural analysis because of its merit in the theoretical backgroud and applicability. Therefore, this paper presents the analysis of hemisphere-cylindrical shell structure base on the transfer matrix method. The technique is attractive for implementation on a numerical solution by means of a computer program coded in FORTRAN language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method.