DOI QR코드

DOI QR Code

MRI Content-Adaptive Finite Element Mesh Generation Toolbox

  • Lee W.H. (Functional and Metabolic Imaging Center Department of Biomedical Engineering, Kyung Hee University) ;
  • Kim T.S. (Functional and Metabolic Imaging Center Department of Biomedical Engineering, Kyung Hee University) ;
  • Cho M.H. (Functional and Metabolic Imaging Center Department of Biomedical Engineering, Kyung Hee University) ;
  • Lee S.Y. (Functional and Metabolic Imaging Center Department of Biomedical Engineering, Kyung Hee University)
  • Published : 2006.06.01

Abstract

Finite element method (FEM) provides several advantages over other numerical methods such as boundary element method, since it allows truly volumetric analysis and incorporation of realistic electrical conductivity values. Finite element mesh generation is the first requirement in such in FEM to represent the volumetric domain of interest with numerous finite elements accurately. However, conventional mesh generators and approaches offered by commercial packages do not generate meshes that are content-adaptive to the contents of given images. In this paper, we present software that has been implemented to generate content-adaptive finite element meshes (cMESHes) based on the contents of MR images. The software offers various computational tools for cMESH generation from multi-slice MR images. The software named as the Content-adaptive FE Mesh Generation Toolbox runs under the commercially available technical computation software called Matlab. The major routines in the toolbox include anisotropic filtering of MR images, feature map generation, content-adaptive node generation, Delaunay tessellation, and MRI segmentation for the head conductivity modeling. The presented tools should be useful to researchers who wish to generate efficient mesh models from a set of MR images. The toolbox is available upon request made to the Functional and Metabolic Imaging Center or Bio-imaging Laboratory at Kyung Hee University in Korea.

Keywords

References

  1. E. Molinari, M.Fato, G. De Leo, D. Riccardo, and F. Beltrame, 'Simulation of the biomechanical behavior of the skin in virtual surgical applications by finite element methods,' IEEE Trans. Biomed. Engi., 2005
  2. M. Ziolkowski, and H. Brauer, 'Methods of mesh generation for biomagnetic problems,' IEEE Trans. Magnetics, vol. 32, no. 3, pp. 1345-1348, 1996 https://doi.org/10.1109/20.497495
  3. U. Hartmann, and F. Kruggel, 'A fast algorithm for generating large tetrahedral 3D finite element meshes from magnetic resonance tomograms,' in Proc. IEEE Biomed. Image Analysis, St. Barbara, 1998, pp. 184-192
  4. T.-S. Kim, Y. Zhou, S. Kim, and M. Singh, 'EEG distributed source imaging with a realistic finite element head model,' IEEE Trans. Nucl. Sci., vol. 49, no. 3, pp. 745-752, 2002 https://doi.org/10.1109/TNS.2002.1039558
  5. S. Kim, T.-S. Kim, Y. Zhou, and M. Singh, 'Influence of conductivity tensors on the scalp electrical potential: study with 2-D finite element models,' IEEE Trans. Nucl. Sci., vol. 50, no. 1, pp. 133-138, 2003 https://doi.org/10.1109/TNS.2002.807937
  6. http://www.comsol.com/
  7. http://www.nenastran.com/
  8. http://www.sciutah.edu/
  9. http://www.cs.comell.edu/Info/People/vavasis/qmghome.html/
  10. C. H. Wolters, M. Kuhn, A. Anwander, and S. Reitzinger, 'Fast anisotropic high resolution finite element head modeling in EEG/MEG source localization,' in Proc. Int. Conf. Biomag., Aug. 2002
  11. W. H. Lee, T.-S. Kim, M. H. Cho, and S. Y. Lee, 'Content-adaptive finite element mesh generation of 3-D complex MR volumes for bioelectromagnetic problems,' in Proc. 27th Ann. Int. Conf. IEEE EMBS, Shanghai, China, Sept. 2005
  12. Y. Yang, M. N. Wernick, and J. G. Brankov, 'A fast approach for accurate content-adaptive mesh generation,' IEEE Trans. Image Processing, voL 12, no. 8, pp. 866-881, 2003 https://doi.org/10.1109/TIP.2003.812757
  13. http://www.mathworks.com/
  14. http://www.gnu.org/
  15. http://web.kyunghee.ac.kr/~fmic/
  16. http://bioimage.khu.ac.kr/
  17. N. GenerandC. E. Acar, 'Sensitivity of EEG and MEG measurements to tissue conductivity,' Phys. Med Biol., vol. 49, pp. 701-717, 2004 https://doi.org/10.1088/0031-9155/49/5/004
  18. T.-S. Kim, S. Kim, D. Huang, and M. Singh, 'DT-MRl Regularization using 3D nonlinear gradient vector flow anisotropic diffusion,' in Proc. Int. Conf. IEEE Eng. Med. Biol., 2004, pp. 1880-1883
  19. J. Weickert, 'A review of nonlinear diffusion filtering,' Scale-Space Theory in Computer Vision, Lecture Notes in Computer Science, vol. 1252, Springer, Berlin, pp. 3-28, 1997
  20. D. Tschumperle and R. Deriche, 'Diffusion PDEs on vector-valued images,' IEEE Sig. Proc. Mag., Sep., pp. 16-25, 2002 https://doi.org/10.1109/MSP.2002.1028349
  21. K. Z. Abd-Elmoniem, A.-B. Youssef, and Y. M. Kadah, 'Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion,' IEEE Trans. Biomed. Engi., vol. 49, no. 9, pp. 997-1014, 2002 https://doi.org/10.1109/TBME.2002.1028423
  22. R. Floyd and L. Steinberg, 'An adaptive algorithm for spatial gray scale,' in Proc. Int. Symp. Digest of Tech. Papers, pp. 36-37, 1975
  23. I. Katsavounidis and C.-C. J. Kuo, 'A multiscale error diffusion technique for digital halftoning,' IEEE Trans. Image Processing, vol. 6, no. 3, 483-490, 1997 https://doi.org/10.1109/83.557360
  24. D. F. Watson, 'Computing the n-dimensional Delaunay tessellation with application to Voronoi polytypes', The Comp. Jour., vol. 24, no.2, pp. 167-172, 1981
  25. http://brainsuite.usc.edu/
  26. B. Dogdas, D. W. Shattuck, and R. M. Leahy, 'Segmentation of skull and scalp in 3-D human MRI using mathematical morphology,' Human Brain Mapping, vol.26, pp.273-285, 2005 https://doi.org/10.1002/hbm.20159
  27. W. H. Lee, J. S. Moon, S. Y. Lee, and T.-S. Kim, 'Numerical evaluation of MRI content-adaptive finite element models via EEG forward solutions,' in Proc. World Congress on Medical Physics and Biomedical Engineering, Seoul, Korea, 2006