• Title/Summary/Keyword: finite volume element

Search Result 752, Processing Time 0.027 seconds

혼합 금속 분말의 고온 치밀화 거동 (Densification Behavior of Mixed Metal Powders under High Temperature)

  • 조진호;김기태
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.735-742
    • /
    • 2000
  • Densification behaviors of mixed metal powder under high temperature were investigated. Experimental data of mixed copper and tool steel powder with various volume fractions of Cu powder were obtained under hot isostatic pressing and hot pressing. By mixing the creep potentials of McMeeking and co-workers and of Abouaf and co-workers originally for pure powder, the mixed creep potentials with various volume fractions of Cu powder were employed in the constitutive models. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densification of mixed powder under hot isostatic pressing and hot pressing. Finite element calculations by using the creep potentials of Abouaf and co-workers agreed reasonably well with experimental data, however, those by McMeeking and co-workers underestimate experimental data as observed in the case of pure metal powders.

냉간압축하에서 혼합금속분말의 치밀화 모델 (A Densification Model for Mixed Metal Powder under Cold Coompaction)

  • 조진호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.112-118
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms of volume fractions and contact numbers of Cu powder new mixed yield functions were employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densificatiojn of mixed powder under cold isostatic pressing and cold die compaction. finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

프리스트레스트 콘크리트 원자로 격납고의 유한요소해석 (Finite Element Analysis of PSC Reactor Containment Vessels)

  • 송하원;최강룡;김경단;변근주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.377-384
    • /
    • 2002
  • In this palter, a finite element technique is applied to both reinforced concrete and prestressed concrete containment vessels to predict the ultimate pressure capacity of the vessels subjected to internal pressure due to accident. The so-called volume-control technique is utilized to control the change in volume enclosed by the cylindrical containment vessels and layered shell elements equipped with a pressure node is utilizing to model the PSC vessels. The finite element analysis is carried out to obtain both global and local failure behavior of prestressed concrete nuclear containment vessels. nalytical results are verified by comparison with experimental data.

  • PDF

회전단조공정 해석을 위한 실용적 유한요소법 (An Approximate Time-Effective Finite Element Method for Analyzing a Rotary Forging Process)

  • 문호근;이민철;정재헌;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.117-121
    • /
    • 2005
  • In this paper, an approximate time-effective approach to rigid-plastic finite element method is presented with its solution scheme and a volume compensation method is proposed to simulate rotary forging processes. The applicability is examined by comparing the results obtained by the presented approach with those by the conventional approach. The approach is applied to simulation of a rotary forging process fur a wheel bearing assembly. The analyzed results are compared with the experimental results.

  • PDF

체적제어법에 의한 철근 콘크리트 원통형 구조물의 파괴 해석 (Failure Analysis of RC Cylindrical Structures using Volume-Control Method)

  • 송하원;방정용;변근주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.195-202
    • /
    • 1999
  • In this Paper, a so-called volume-control method for nonlinear failure analysis of reinforced concrete cylindrical structures is proposed. The pressure node which defines uniform change of pressure on finite element is added into layered shell element utilizing in-plane constitutive models of reinforced concrete and layered formulation. With the pressure node formulation, one can control the change in volume enclosed by the cylindrical structures and determine the required change in pressure. An algorith of volume-control method is employed and failure analyses for RC cylindrical structures are carried out using proposed method.

  • PDF

MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법 (Optimal Design of MR Damper : Analytical Method and Finite Element Method)

  • 하성훈;성민상;구오흥;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.581-586
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff’s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.

  • PDF

MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법 (Optimal Design of MR Damper : Analytical Method and Finite Element Method)

  • 하성훈;성민상;구오흥;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1110-1118
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff' s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.

불포화 토양에서 빗물의 침투특성 : 유한요소 모델과 실험결과 비교 (Rainwater Infiltration Characteristics in the Unsaturated Soil : Comparison of Finite Element Model with Experimental Results)

  • 유건선;김상래;김충일;윤현식;한무영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권6호
    • /
    • pp.27-33
    • /
    • 2011
  • Infiltration plays an important role in the urban water cycle. Infiltration has a potential to contribute to groundwater recharge in addition to runoff reduction. However, infiltration in urban areas has been considered only as a means of runoff reduction. Conventional design methods for infiltration facilities assume soils to be fully-saturated for the sake of simplicity. The amount of groundwater recharge can not be estimated properly with this scheme. Hence, the characteristics of the unsaturated soil condition need to be considered. The finite element model using SEEP/W to estimate infiltration under the unsaturated condition is presented. Infiltration tests for Joomonjin sand are performed and the infiltration behavior of Joomoonjin sand under the unsaturated condition is measured experimentally to verify the validity of the finite element model. The results from comparing infiltrated volume between the saturated and the unsaturated conditions under the same soil and rainfall conditions show that the infiltrated volume in the unsaturated condition is two times bigger than that in the saturated condition.

유한요소해석을 이용한 증육 모델의 성형특성 연구 (Study of Forming Properties for an Edge Thickening Model Using the Finite Element Method)

  • 조종두;김영진
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.234-239
    • /
    • 2012
  • This study examines the forming properties and forming loads needed to increase the edge thickness on the external face of a plate using finite element analysis(FEA). Recently, forming optimization techniques within FEA are being extensively used in designing the optimal forming conditions for processes like forging, extrusion, rolling, and spinning. Most of these existing forming operations involve reducing the volume per unit length, but research for increasing volume per unit length is not very extensive. For this study we chose an automotive engine flywheel which is a welded assembly of a plate and a gear with each component having a different thickness. We considered a forming technique to increase the thickness in order to allow the machining of the gear directly on the external face of plate alleviating the need for a weld. To study various forming techniques, we used the finite element method with the flow stress of material and incremental forming steps. We conclude from this study that the analysis of forming properties and forming loads by using the finite element analysis and testing is useful as a method to increase the thickness per unit length.

기하적 필수 전위에 의한 길이효과를 고려한 입자 강화 알루미늄 복합재의 강도해석 (Strength Analysis of Particle-Reinforced Aluminum Composites with Length-Scale Effect based on Geometrically Necessary Dislocations)

  • 서영성;김용배;이장규
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.482-487
    • /
    • 2009
  • A finite element based microstructural modeling for the size dependent strengthening of particle reinforced aluminum composites is presented. The model accounts explicitly for the enhanced strength in a discretely defined "punched zone" around the particle in an aluminum matrix composite as a result of geometrically necessary dislocations developed through a CTE mismatch. The density of geometrically necessary dislocations is calculated considering volume fraction of the particle. Results show that predicted flow stresses with different particle size are in good agreement with experiments. It is also shown that 0.2% offset yield stresses increases with smaller particles and larger volume fractions and this length-scale effect on the enhanced strength can be observed by explicitly including GND region around the particle. The strengths predicted with the inclusion of volume fraction in the density equation are slightly lower than those without.