DOI QR코드

DOI QR Code

Strength Analysis of Particle-Reinforced Aluminum Composites with Length-Scale Effect based on Geometrically Necessary Dislocations

기하적 필수 전위에 의한 길이효과를 고려한 입자 강화 알루미늄 복합재의 강도해석

  • Published : 2009.10.01

Abstract

A finite element based microstructural modeling for the size dependent strengthening of particle reinforced aluminum composites is presented. The model accounts explicitly for the enhanced strength in a discretely defined "punched zone" around the particle in an aluminum matrix composite as a result of geometrically necessary dislocations developed through a CTE mismatch. The density of geometrically necessary dislocations is calculated considering volume fraction of the particle. Results show that predicted flow stresses with different particle size are in good agreement with experiments. It is also shown that 0.2% offset yield stresses increases with smaller particles and larger volume fractions and this length-scale effect on the enhanced strength can be observed by explicitly including GND region around the particle. The strengths predicted with the inclusion of volume fraction in the density equation are slightly lower than those without.

Keywords

References

  1. R. J. Arsenault, N. Shi, 1986, Dislocation Generation due to Differences between the Coefficients of Thermal Expansion, Mater. Sci. Eng. A, Vol. 81, pp. 175-187 https://doi.org/10.1016/0025-5416(86)90261-2
  2. D. J. Lloyd, 1994, Particle Reinforced Aluminum and Magnesium Matrix Composites, Int. Mater. Rev., Vol. 39, No.1, pp. 1-23 https://doi.org/10.1179/imr.1994.39.1.1
  3. M. Vogelsang, R. J. Arsenault, R. M. Fisher, 1986, An In Situ HVEM Study of Dislocation Generation at AI/SiC Interfaces in Metal Matrix Composites, Metall. Trans. A, Vol. 17, No. 3, pp. 379-389 https://doi.org/10.1007/BF02643944
  4. M. F. Ashby, 1970, The Deformation of Plastically Non-homogeneous Materials, Philos. Mag., Vol. 21, No. 170, pp. 399-424 https://doi.org/10.1080/14786437008238426
  5. N. A. Fleck, J. W. Hutchinson, 1993, A Phenomenological Theory for Strain Gradient Effects in Plasticity, J. Mech. Phys. Solids, Vol. 41, No. 12, pp. 1825-1857 https://doi.org/10.1016/0022-5096(93)90072-N
  6. N. A. Fleck, G. M. Muller, M. F. Ashby, J. W. Hutchinson, 1994, Strain Gradient Plasticity Theory and Experiment, Acta Metall. Mater., Vol. 42, No.2, pp. 475-487 https://doi.org/10.1016/0956-7151(94)90502-9
  7. S. H. Kim, H. Huh, H. T. Hahn, 2005, The Size Effect in Particulate Composite Materials-SizeDependent Plasticity, Proc. Kor. Soc. Tech. Plast. Conf., Jinju, Korea, p. 167
  8. Y. S. Suh, S. P. Joshi, K. T. Ramesh, 2009, Continuum Microstructural Modeling of the Length-Scale Dependent Strengthening and Failure in Particle Reinforced Composites, Acta Metall. Mater., doi: 10.1016/j.actamat.2009.08.010
  9. S. Shibata, M. Taya, T. Mori, T. Mura, 1992, Dislocation Punching from Spherical Inclusions in a Metal Matrix Composite, Acta Metall. Mater., Vol. 40, No. 11, pp. 3141-3148 https://doi.org/10.1016/0956-7151(92)90477-V
  10. DSSC, 1998, ABAQUS User's manual, Hibbit, Karlsson & Sorensen, inc., New York, USA
  11. M. Taya, K. E. Lulay, D. J. Lloyd, 1991, Strengthening of a Particulate Metal Matrix Composite by Quenching, Acta Metall. Mater., Vol. 39, No.1, pp. 73-87 https://doi.org/10.1016/0956-7151(91)90329-Y
  12. K. Tanaka, K. Narita, T. Mori, 1972, Work Hardening of Materials with Strong Inclusions after Prismatic Punching, Acta Metall., Vol. 20, No. 3, pp. 297-304 https://doi.org/10.1016/0001-6160(72)90021-1
  13. J. D. Eshelby, 1959, The Elastic Field Outside an Ellipsoidal Inclusion, Proc. R. Soc. London, Ser. A, Vol. A252, pp. 561-569
  14. N. Hansen, 1977, The Effect of Grain Size and Strain on the Tensile Stress of Aluminium at Room Temperature, Acta Metall., Vol. 25, No.8, 1977, pp. 863-869 https://doi.org/10.1016/0001-6160(77)90171-7
  15. R. J. Arsenault, L. Wang, C. R. Feng, 1991, Strengthening of Composites due to Microstructural Changes in the Matrix, Acta Metall. Mater., Vol. 39, No.1, pp. 47-57 https://doi.org/10.1016/0956-7151(91)90327-W
  16. S. Qu, T. Siegmund, Y. Huang, P. D. Wu, F. Zhang, K. C. Hwang, 2005, A Study of Particle Size Effect and Interface Fracture in Aluminum Alloy Composite via an Extended Conventional Theory of Mechanism-based Strain-Gradient Plasticity, Compos. Sci. Technol., Vol. 65, No. 7-8, pp. 1244-1253 https://doi.org/10.1016/j.compscitech.2004.12.029
  17. D. L. McDanels, 1985, Analysis of Stress-Strain, Fracture, and Ductility Behavior of Aluminum Matrix Composites Containing Discontinuous Silicon Carbide Reinforcement, Metall. Mater. Trans. A, Vol. 16, No.6, pp, 1105-1115 https://doi.org/10.1007/BF02811679

Cited by

  1. Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure vol.36, pp.2, 2012, https://doi.org/10.3795/KSME-A.2012.36.2.187
  2. Numerical Assessment of Dislocation-Punching Theories for Continuum Structural Analysis of Particle-Reinforced Metal Matrix Composites vol.35, pp.3, 2011, https://doi.org/10.3795/KSME-A.2011.35.3.273
  3. Modeling of Size-Dependent Strengthening in Particle-Reinforced Aluminum Composites with Strain Gradient Plasticity vol.35, pp.7, 2011, https://doi.org/10.3795/KSME-A.2011.35.7.745