• Title/Summary/Keyword: finite strip method

Search Result 214, Processing Time 0.021 seconds

Strength buckling predictions of cold-formed steel built-up columns

  • Megnounif, A.;Djafour, M.;Belarbi, A.;Kerdal, D.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.443-460
    • /
    • 2008
  • The aim of this paper is to propose a design procedure for predicting the buckling strength of built-up, cold-formed steel columns based on the two well known methods; the effective width method and the Direct Strength Method. Several design approaches, based on different elastic buckling solutions, were considered in this investigation. Traditional hand methods, without interaction effects between the different modes, and a new numerical spline finite strip method were used to predict the buckling stresses. All of the proposed methods were compared with experimental data on plain and lipped, built-up columns. Results have shown that the effective width approaches are more accurate than the Direct Strength Method. However, both methods can be investigated using more experimental data to assess a practical design method for built-up columns.

An innovative approach for analyzing free vibration in functionally graded carbon nanotube sandwich plates

  • Shahabeddin Hatami;Mohammad J. Zarei;Seyyed H. Asghari Pari
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • Functionally graded-carbon nanotube (FG-CNT) is expected to be a new generation of materials with a wide range of potential applications in technological fields such as aerospace, defense, energy, and structural industries. In this paper, an exact finite strip method for functionally graded-carbon nanotube sandwich plates is developed using first-order shear deformation theory to get the exact natural frequencies of the plates. The face sheets of the plates are made of FG-CNT with continuous and smooth grading based on the power law index. The equations of motion have been generated based on the Hamilton principle. By extracting the exact stiffness matrix for any strip of the sandwich plate as a non-algebraic function of natural frequencies, it is possible to calculate the exact free vibration frequencies. The accuracy and efficiency of the current method is established by comparing its findings to the results of the literature works. Examples are presented to prove the efficiency of the generated method to deal with various problems, such as the influence of the length-to-height ratio, the power law index, and a core-to-face sheet thickness of the single and multi-span sandwich plates with various boundary conditions on the natural frequencies. The exact results obtained from this analysis can check the validity and accuracy of other numerical methods.

Finite Element Analysis of Edge Fracture of Electrical Steel Strip in Reversible Cold Rolling Mill (가역식 냉간 압연기에서 전기강판의 에지 파단에 관한 유한요소해석)

  • Byon, Sang Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1619-1625
    • /
    • 2012
  • An electrical steel strip is commonly used as a core material in all types of electric transformers and motors. It is produced by a cold rolling process. In this paper, a damage-mechanics-based approach that predicts the edge fracture of an electrical steel strip during cold rolling is presented. We adopted the normal tensile stress criterion and the fracture energy method as a damage initiation criterion and a damage evolution scheme, respectively. We employed finite element analysis (FEA) to simulate crack initiation and propagation at the initial notch located at the edges of the strip. The material constants required in FEA were experimentally obtained by tensile tests using a standard and a notched sheet-type specimen. The results reveal that the edge crack was initiated at the entrance of the roll bite and that it rapidly evolved at the exit. The evolution length of the edge crack increased as the length of the initial notch as well as the front tension reel force of the strip increased.

The study of stress distribution of cold rolled Steel sheets in tension leveling process (냉연 형상 교정시 Stress 천이 현상 연구)

  • Choi H.T.;Hwang S.M.;Koo J.M.;Park K.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.74-79
    • /
    • 2004
  • The shape of cold rolled steel sheets is the degree of flatness, and the flatter, the better. Because undesirable strip shapes of cold rolled steel sheets can affect not only visible problem but also automatic working process in customer's lines, the requirement of the customers is more and more stringent. So we usually used the tension leveler to make high quality of strip flatness. For the improvement of the quality of strip flatness, this report developed three-dimensional FEM (Finite Element Method) simulation model, and analysis about the strain and stress distribution of strip in the tension leveling process.

  • PDF

A Study on the Electromagnetic Properties due to Circuit Patters in the Printed Circuit Hoard using Computer Simulation (컴퓨터 시뮬레이션을 이용한 PCB기판에서의 회로패턴에 따른 전자기적 특성에 관한 연구)

  • 이찬오;이성일;김용주;박광현;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.265-269
    • /
    • 1996
  • In this paper, electric field interference was analyzed in the Printed Circuit Board to restrain the elcctromagnetic wave using Boundary Element Method and Finite Element Method. First, charge density distribution was simulated using Boundary Element Method and the characteristic impedance was caculated to restrain the reflex wave, and mutual capacitance was caculated in the multi-strip line PCB. Finally, electric field was simulated in the variable patterns using Finite Element Method. As a result, the optimal structure and characteristics of strip line was obtained and the imformations about the optimal design pattern could be obtained with the analysing the feild distribution.

  • PDF

Finite Element Analysis of Slab Deformation under the Width Reduction in Hot Strip Mill (열간압연 폭압하시 슬래브 변형거동의 유한요소해석)

  • 천명식;정제숙;안익태;문영훈
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.668-674
    • /
    • 2003
  • Rigid-plastic finite element analyses on the deformation of slabs at various width reductions have been performed. By using commercial finite element code, dog-bone profile, crop profile and the longitudinal width profile after edging and Horizontal rolling have been analysed. The deformation behavior of slab for the heavy edger mill has also been compared with that for the sizing press. From the deformation analyses, it was found that the sizing press-horizontal rolling method is more efficient in width reduction than that of heavy edger mill-horizontal rolling. The results of finite element analyses fer the deformation of slab were well confirmed by the actual operational data. It was found that the amount of width variation after sizing and rolling is about 5∼10mm.

Roll force and tension distribution along the width for the precision prediction of strip deformation (판 변형 정밀 예측을 위한 폭방향 압하력 및 tension 분포예측 모델 개발)

  • Kim Y. K.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.153-162
    • /
    • 2004
  • The force profile from strip to work roll is very important factor in deformation of roll. But It is not easy to predict the profile because strip crown affect its tendency. From finite element method result, some assumptions can be obtained and the roll force profile model is derived. Also the tension profile and lateral strain are derived. The prediction accuracy of the proposed model is examined through comparison with finite element calculation result.

  • PDF

3-D Coupled Analysis of Deformation of the Strip and Rolls in Flat Rolling by FEM - Part I: Approach (유한요소법을 활용한 평판압연에서의 롤 판 연계 해석 - Part I: 접근법)

  • Park, H.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.228-233
    • /
    • 2017
  • In flat rolling mills, demands for precise process set-up and control are increasing than ever before. Consequently, it is imperative to establish a novel approach, which would provide valuable information regarding the detailed aspects of deformation behavior of the strip, and rolls during rolling. In this paper, we present a finite element (FE) approach for 3-D coupled analysis of the elastic-plastic deformation of the strip and the elastic deformation of rolls in the roll-stack of a mill stand.

H-Polarized Scattering by a Resistive Strip Grating with the Tapered Resistivity Over a Grounded Dielectric Plane : from Finite at One Strip-Edge to Zero at the Other Strip-Edge (접지된 유전체 평면위의 변하는 저항율을 갖는 저항띠 격자구조에 의한 H-분극 산란 : 한쪽 모서리에서 유한하고 다른쪽 모서리로 가면서 0인 경우)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.543-548
    • /
    • 2011
  • In this paper, H-polarized electromagnetic scattering problems by a resistive strip grating over a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of a dielectric layer, and incident angles of a TE (transverse electric) plane wave are analyzed by applying the FGMM (Fourier-Galerkin Moment Method). The tapered resistivity of resistive strips in this paper varies from finite resistivity at one edge to zero resistivity at the other edge, then the induced surface current density on the resistive strip is expanded in a series of Jacobi polynomials of the order ${\alpha}=1$, ${\beta}=0$ as a kind of orthogonal polynomials. The numerical results of the normalized reflected power show in good agreement with those of existing papers.

A numerical method for buckling analysis of built-up columns with stay plates

  • Djafour, M.;Megnounif, A.;Kerdal, D.;Belarbi, A.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.441-457
    • /
    • 2007
  • A new numerical model based on the spline finite strip method is presented here for the analysis of buckling of built-up columns with and without end stay plates. The channels are modelled with spline finite strips while the connecting elements are represented by a 3D beam finite element, for which the stiffness matrix is modified in order to ensure complete compatibility with the strips. This numerical model has the advantage to give all possible failure modes of built-up columns for different boundary conditions. The end stay plates are also taken into account in this method. To validate the model a comparative study was carried out. First, a general procedure was chosen and adopted. For each numerical analysis, the lowest buckling loads and modes were calculated. The basic or "pure" buckling modes were identified and their critical loads were compared with solutions obtained using analytical methods and/or other numerical methods. The results showed that the proposed numerical model can be used in practice to study the elastic buckling of built-up columns. This model is considered accurate and efficient for the local buckling of short columns and global buckling for slender columns.