• Title/Summary/Keyword: finite member element

Search Result 442, Processing Time 0.028 seconds

Study on behavior of RCC beams with externally bonded FRP members in flexure

  • Sumathi, A.;Arun Vignesh, S.
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.625-638
    • /
    • 2017
  • The flexural behavior of Fiber reinforced polymer (FRP) sheets has gained much research interest in the flexural strengthening of reinforced concrete beams. The study on flexure includes various parameters like increase in strength of the member due to the externally bonded (EB) Fiber reinforced polymer, crack patterns, debonding of the fiber from the structure, scaling, convenience of using the fibers, cost effectiveness, etc. The present work aims to study experimentally about the reasons behind the failure due to flexure of an externally bonded FRP concrete beam. In the design of FRP-reinforced concrete structures, deflection control is as critical as much as flexural strength. A numerical model is created using Finite element (FEM) software and the results are compared with that of the experiment.

Effects of geometrical parameters on the degree of bending in two-planar tubular DYT-joints of offshore jacket structures

  • Hamid Ahmadi;Mahdi Ghorbani
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.97-121
    • /
    • 2023
  • Through-the-thickness stress distribution in a tubular member has a profound effect on the fatigue behavior of tubular joints commonly found in steel offshore structures. This stress distribution can be characterized by the degree of bending (DoB). Although multi-planar joints are an intrinsic feature of offshore tubular structures and the multi-planarity usually has a considerable effect on the DoB values at the brace-to-chord intersection, few investigations have been reported on the DoB in multi-planar joints due to the complexity of the problem and high cost involved. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified based on available parametric equations, was used to study the effects of geometrical parameters on the DoB values in two-planar tubular DYT-joints. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new DoB parametric equations for the fatigue analysis and design of axially loaded two-planar DYT-joints.

Modelling of Shear Localisation in Geomaterials

  • Lee, Jun-Seok;Pan
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-32
    • /
    • 1997
  • In this paper, an enhanced finite element model based on homogenisation technique is proposed to capture the localized failure mode of the intact rock masses. For this, bifurcation analysis at the element level is performed and, once the bifurcation is detected, equivalent material properties of the shear band and neighbouring intact rock are used to trace the post -peak behaviour of the material. It is demonstrated that mesh sensitivity of the strain softening model is overcome and progressive failure mode of rock specimen can be simulated relaistically. Furthermore, the numerical results show that the crack propagation and final failure mode can be captured with relatively coarse meshes and compares well with the experimental data available.

  • PDF

Nonlinear model of reinforced concrete frames retrofitted by in-filled HPFRCC walls

  • Cho, Chang-Geun;Ha, Gee-Joo;Kim, Yun-Yong
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.211-223
    • /
    • 2008
  • A number of studies have suggested that the use of high ductile and high shear materials, such as Engineered Cementitious Composites (ECC) and High Performance Fiber Reinforced Cementitious Composites (HPFRCC), significantly enhances the shear capacity of structural elements, even with/without shear reinforcements. The present study emphasizes the development of a nonlinear model of shear behaviour of a HPFRCC panel for application to the seismic retrofit of reinforced concrete buildings. To model the shear behaviour of HPFRCC panels, the original Modified Compression Field Theory (MCFT) for conventional reinforced concrete panels has been newly revised for reinforced HPFRCC panels, and is referred to here as the HPFRCC-MCFT model. A series of experiments was conducted to assess the shear behaviour of HPFRCC panels subjected to pure shear, and the proposed shear model has been verified through an experiment involving panel elements under pure shear. The proposed shear model of a HPFRCC panel has been applied to the prediction of seismic retrofitted reinforced concrete buildings with in-filled HPFRCC panels. In retrofitted structures, the in-filled HPFRCC element is regarded as a shear spring element of a low-rise shear wall ignoring the flexural response, and reinforced concrete elements for beam or beam-column member are modelled by a finite plastic hinge zone model. An experimental study of reinforced concrete frames with in-filled HPFRCC panels was also carried out and the analysis model was verified with correlation studies of experimental results.

On the Monlinear Analysis of Ship's Structures -Ultimate Strength Analysis of Plates and Stiffened Plates under Compressive Load- (선체구조물(선체구조물)에 관한 비선형(비선형) 해석연구(해석연구) -압축하중하(壓縮荷重下)의 평판(平板)과 보강판(補剛板)의 극한강도해석(極限强度解析)-)

  • J.D.,Koo;J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 1983
  • In this paper elastic-plastic large deflection analysis of ship structural members, plates, stiffened plates and cylindrical shallow shell, are performed by the finite element method. And for the consideration of the yielded propagation through the depth of the member, the layered element approach is employed. The present method is justified by comparing its results with those of experiment and others. As results, the nonlinear behavior and the ultimate strength curves are shown, which can be used in the design of the plates and the stiffened plates under compression, and the applicability to the shell structures is suggested. The analysis results are as followings. (1) The results of the approximate equations as well as those of buckling analysis may not guarantee precisely the safety of the structures in some cases and the optimum in other cases. Therefore they may not show the design criteria for the optimal design. (2) As the initial deflection increases, its effects on the ultimate strength of the structure generally increases, and the ultimate load, therefore, decreases. (3) This approach can be applied to the shell type structures. (4) The present method can be applied to the various structures composed of plate and beam members, for example, plates with hole and the stiffened plates with hole stiffened by spigot, doubler and/or stiffener, for the optimal design.

  • PDF

Analytical Study on the Inelastic Behavior of Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.29-40
    • /
    • 2005
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

Analytical Study on Joints in Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 접합부에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.79-87
    • /
    • 2007
  • This paper presents an analysis procedures of Joints in precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbended tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for joints in precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

Performance Assessment of Precast Concrete Segmental Bridge Columns with Shear Resistance Connecting Structure (전단저항 연결체를 갖는 프리캐스트 세그먼트 교각의 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kim, Seong-Woon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.591-601
    • /
    • 2008
  • The purpose of this study was to investigate the performance of precast concrete segmental bridge columns with shear resistance connecting structure. The system can reduce work at a construction site and makes construction periods shorter. A model of precast concrete segmental bridge columns with shear resistance connecting structure was tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. An bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly modified to predict the inelastic behaviors of segmental joints. The proposed numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated.

Evaluation of Deformation Characteristics and Vulnerable Parts according to Loading on Compound Behavior Connector (복합거동연결체의 하중재하에 따른 변형 특성 및 취약부위 산정)

  • Kim, Ki-Sung;Kim, Dong-wook;Ahn, Jun-hyuk
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.524-530
    • /
    • 2019
  • Purpose: In this paper, we construct a detailed three-dimensional interface element using a three-dimensional analysis program, and evaluate the composite behavior stability of the connector by applying physical properties such as the characteristics of general members and those of reinforced members Method: The analytical model uses solid elements, including non-linear material behavior, to complete the modeling of beam structures, circular flanges, bolting systems, etc. to the same dimensions as the design drawing, with each member assembled into one composite behavior linkage. In order to more effectively control the uniformity and mesh generation of other element type contact surfaces, the partitioning was performed. Modeled with 50 carbon steel materials. Results: It shows the displacement, deformation, and stress state of each load stage by the contact adjoining part, load loading part, fixed end part, and vulnerable anticipated part by member, and after displacement, deformation, The effect of the stress distribution was verified and the validity of the design was verified. Conclusion: Therefore, if the design support of the micro pile is determined based on this result, it is possible to identify the Vulnerable Parts of the composite behavior connector and the degree of reinforcement.

A Study on Deflection Characteristic of Composite Girder with Incomplete Interaction (불완전 합성형의 처짐특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Kim, Yun Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.437-449
    • /
    • 1998
  • In order that the steel girder and the concrete slab act as a composite structure, the connectors must have adequate strength and stiffness. If there are no horizontal or vertical separations at the interface, the connectors are described as rigid, and complete interaction can be said to exist under these idealized circumstances. However, all connectors are flexible to some extent, and therefore incomplete interaction always exists. This paper presents a practical structural analysis of composite girders with incomplete interaction by three methods. One is the stiffness matrix method derived from the general solutions of differential equation, another is the finite element analysis that alternate method of solution treats the structure as a frame and defines the spring as an additional member, and the other is the finite element analysis using principle of virtual work. The deflection characteristic of composite girder is investigated using these three methods. Also, this paper propose a simplified procedure of estimating a degree of imperfection for a composite girder with incomplete interaction using the sectional properties of girder and spring constants of shear connectors.

  • PDF