• Title/Summary/Keyword: finite impulse response

Search Result 223, Processing Time 0.027 seconds

On the subjective response caused by impulse sounds produced by leisure shooting (레저용 사격 소음에 대한 주관적 반응)

  • Kim, Deuk-Sung;Chang, Seo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.714-720
    • /
    • 2008
  • This research presents a laboratory study about an subjective response of impulsive sound caused by leisure shooting. The sources are sampled from outdoor noise and their levels range from 40 to 75 dB at the interval of 5dB. The noise unit is based on A-weighted sound exposure level (ASEL; $L_{AE}$). To make equal ASEL of outdoor noise, finite impulse response (FIR) filter is applied to the originally sampled source to include the effect of distance attenuation. The evaluation method of the jury test adopted a Semantic Difference(SD) Method. In the result of the jury test for impulsive noise, the mean response rating expressed a linear relation and %HA(percent highly annoyed) displayed a exponential growth relation.

  • PDF

Fast Convolution Method using Psycho-acoustic Filters in Sound Reverberator (잔향 생성기에서 심리 음향 필터를 이용한 고속 컨벌루션 방법)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1037-1041
    • /
    • 2007
  • With the advent of sound field simulator, many sound fields have been reproduced by obtaining the impulse responses of specific acoustic spaces like famous concert hall, opera house. This sound field reproduction has been done by the linear convolution operation between the sound input signal and the impulse response of certain acoustic space. However, the conventional finite impulse response based linear convolution operation always makes real-time implementation of sound field generator impossible due to the large amount of computational burden. This paper introduces the fast convolution method using perceptual redundancy in the processed signals, input audio signal and room impulse response. Temporal and spectral psycho-acoustic filters considering masking effects are implemented in the proposed convolution structure. It reduces the computational burden of convolution methods for realtime implementation of a sound field generator. The conventional convolutions are compared with the proposed one in views of computational burden and sound quality. In the proposed method, a considerable reduction in the computational burden was realized with acceptable changes in sound quality.

  • PDF

Fast Convolution Method Using Real-time Masking Effects in Sound Reverberator (잔향 생성기에서 실시간 마스킹 효과를 이용한 고속 컨벌루션 방법)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.231-237
    • /
    • 2008
  • With the advent of sound field simulator, many sound fields have been reproduced by obtaining the impulse responses of specific acoustic spaces like famous concert hall, opera house. This sound field reproduction has been done by the linear convolution operation between the sound input signal and the impulse response of certain acoustic space. However, the conventional finite impulse response based linear convolution operation always makes real-time implementation of sound field generator impossible due to the large amount of computational burden. This paper introduces the fast convolution method using perceptual redundancy in the processed signals, input audio signal and room impulse response. Temporal and spectral real-time masking blocks are implemented in the proposed convolution structure. It reduces the computational burden of convolution methods for real-time implementation of a sound field generator. The conventional convolutions are compared with the proposed one in views of computational burden and sound quality. In the proposed method, a considerable reduction in the computational burden was realized with acceptable changes in sound quality.

The Nonlinear Equalizer for Super-RENS Read-out Signals using an Asymmetric Waveform Model (비대칭 신호 모델을 이용한 super-RENS 신호에서의 비선형 등화기)

  • Moon, Woosik;Park, Sehwang;Lee, Jieun;Im, Sungbin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.70-75
    • /
    • 2014
  • Super-resolution near-field structure (super-RENS) read-out samples are affected by a nonlinear and noncausal channel, which results in inter-symbol interference (ISI). In this study, we investigate asymmetry or domain bloom in super-RENS in terms of equalization. Domain bloom is caused by writing process in optical recording. We assume in this work that the asymmetry symbol conversion scheme is to generate asymmetric symbols, and then a linear finite impulse response filter can model the read-out channel. For equalizing this overall nonlinear channel, the read-out signals are deconvolved with the finite impulse response filter and its output is decided based on the decision rule table that is developed from the asymmetry symbol conversion scheme. The proposed equalizer is investigated with the simulations and the real super-RENS samples in terms of raw bit error rate.

Harmonic Estimation of Power Signal Based on Time-varying Optimal Finite Impulse Response Filter (시변 최적 유한 임펄스 응답 필터 기반 전력 신호 고조파 검출)

  • Kwon, Bo-Kyu
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.97-103
    • /
    • 2018
  • In this paper, the estimation method for the power signal harmonics is proposed by using the time-varying optimal finite impulse response (FIR) filter. To estimate the magnitude and phase-angle of the harmonic components, the time-varying optimal FIR filter is designed for the state space representation of the noisy power signal which the magnitude and phase is considered as a stochastic process. Since the time-varying optimal FIR filter used in the proposed method does not use any priori information of the initial condition and has FIR structure, the proposed method could overcome the demerits of Kalman filter based method such as poor estimation and divergence problem. Due to the FIR structure, the proposed method is more robust against to the model uncertainty than the Kalman filter. Moreover, the proposed method gives more general solution than the time-invariant optimal FIR filter based harmonic estimation method. To verify the performance and robustness of the proposed method, the proposed method is compared with time-varying Kalman filter based method through simulation.

An Optimal Fixed-lag FIR Smoother for Discrete Time-varying State Space Models (이산 시변 상태공간 모델을 위한 최적 고정 시간 지연 FIR 평활기)

  • Kwon, Bo-Kyu;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • In this paper, we propose an optimal fixed-lag FIR (Finite-Impulse-Response) smoother for a class of discrete time-varying state-space signal models. The proposed fixed-lag FIR smoother is linear with respect to inputs and outputs on the recent finite horizon and estimates the delayed state so that the variance of the estimation error is minimized with the unbiased constraint. Since the proposed smoother is derived with system inputs, it can be adapted to feedback control system. Additionally, the proposed smoother can give more general solution than the optimal FIR filter, because it reduced to the optimal FIR filter by setting the fixed-lag size as zero. A numerical example is presented to illustrate the performance of the proposed smoother by comparing with an optimal FIR filter and a conventional fixed-lag Kalman smoother.

RECURSIVE FIR FILTERS FOR DISCRETE TIME-INVARIANT STATE-SPACE MODELS (순환형 FIR 필터)

  • Gwon, O-Gyu;Gwon, Uk-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 1986.07a
    • /
    • pp.140-144
    • /
    • 1986
  • In this paper an FIR(finite impulse response) filter and smoother are introduced for discrete time-invariant state-space models with driving noises. The FIR structure not only quarantees the BIBO stability and the robustness to parameter changes but also improves the filter divergence problem. It is shown that the impulse responses of the FIR filter and the smoother are obtained by Riccati-type difference equations and that they are to be time-invariant and reduced to very simple forms. For implementational purpose, recursive forms of the FIR filler and smoother are derived with each other used as the adjoint variable.

  • PDF

FRF Distortion Caused by Exponential Window Function on Impact Hammer Testing and Its Solution (지수창함수를 사용한 임팩트햄머 실험에서 주파수응답함수의 왜곡과 개선책)

  • 안세진;정의봉
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.334-340
    • /
    • 2003
  • Exponential window function Is widely used In impact hammer testing to reduce leakage error as well as to get a good S/N ratio. The larger its decaying rate is, the more effectively the leakage errors are reduced. But if the decay rate of the exponential window is too large, the FRF is distorted. And the modal parameters of the system can not be exactly identified by modal analysis technique. Therefore, it is a difficult problem to determine proper decay rate in impact hammer testing. In this paper, amount of the FRF distortion caused by exponential window is theoretically uncovered. A new circle fitting method is also proposed so that the modal parameters are directly extracted from impulse response spectrum distorted by the exponential-windowed impulse response data. The results by the conventional and proposed circle fitting method are compared through a numerical example.

Vibration Control of Flexible Structures by using Conveying Fluid Pipe (유동유체가 흐르는 파이프에 의한 유연 구조물의 진동제어)

  • 류시웅;김건희;공창덕;오경원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • This paper describes a new vibration-suppression technique for flexible cantilevered structures by using a pipe containing an internal flow. The stability and dynamic response are analyzed based on the finite element method. The flutter limit and optimum stabilizing fluid velocity are determined in root locus diagrams. The impulse responses of the system are studied by the mode superposition method to observe the damping rate of the motion. The stabilizing effect of an internal flow is demonstrated by impulse responses of the structures with and without an material damping. It is found that the response of the pipe with flow of liquid has a larger effect of, stabilizing than that with flow of gas.

Time domain buffeting analysis of long suspension bridges under skew winds

  • Liu, G.;Xu, Y.L.;Zhu, L.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.421-447
    • /
    • 2004
  • This paper presents a time domain approach for predicting buffeting response of long suspension bridges under skew winds. The buffeting forces on an oblique strip of the bridge deck in the mean wind direction are derived in terms of aerodynamic coefficients measured under skew winds and equivalent fluctuating wind velocities with aerodynamic impulse functions included. The time histories of equivalent fluctuating wind velocities and then buffeting forces along the bridge deck are simulated using the spectral representation method based on the Gaussian distribution assumption. The self-excited forces on an oblique strip of the bridge deck are represented by the convolution integrals involving aerodynamic impulse functions and structural motions. The aerodynamic impulse functions of self-excited forces are derived from experimentally measured flutter derivatives under skew winds using rational function approximations. The governing equation of motion of a long suspension bridge under skew winds is established using the finite element method and solved using the Newmark numerical method. The proposed time domain approach is finally applied to the Tsing Ma suspension bridge in Hong Kong. The computed buffeting responses of the bridge under skew winds during Typhoon Sam are compared with those obtained from the frequency domain approach and the field measurement. The comparisons are found satisfactory for the bridge response in the main span.