• Title/Summary/Keyword: finite element approach

Search Result 1,959, Processing Time 0.029 seconds

Finite Element Analysis of Magnetostrictive Linear Actuator (자왜재료를 이용한 선형 작동기의 유한요소 해석)

  • Kim, Yoon-Chang;Kim, Jae-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.4 s.121
    • /
    • pp.356-362
    • /
    • 2007
  • Magnetostrictive materials have been used for linear actuators due to its large strain, large force output with moderate frequency band in the presence of magnetic field. However their performance analysis is difficult because of nonlinear material behaviors in terms of coupled strain-magnetic field dependence, nonlinear permeability, pre-stress dependence and hysteresis. This paper presents a finite element analysis technique for magnetostrictive linear actuator. To deal with coupled problems and nonlinear behaviors, a simple finite element approach is proposed, which is based on separate magnetic field calculation and displacement simulation. The finite element formulation and an in-house program development are illustrated, and a simulation model is made for a magnetostrictive linear actuator. The fabrication and performance test of the linear actuator are explained, and the performance comparison with simulation result is shown. Since this approach is simple, it can be applied for analyzing magnetostrictive underwater projectors and ultrasonic transducers.

Health Monitoring of Weldment By Post-processing Approach Using Finite Element Analysis (유한요소해석 후처리 기법을 이용한 용접부의 건전성 평가)

  • 이제명;백점기;강성원;김명현
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.32-36
    • /
    • 2002
  • In this paper, a numerical methodology for health monitoring of weldment was proposed using finite element method coupled with continuum damage mechanics. The welding-induced residual stress distribution of T-joint weldment was calculated using a commercial finite element package SYSWELD+. The distribution of latent damage was evaluated from the stress and strain components taken as the output of a finite element calculation. Numerical examples were given to demonstrate the usefulness of this so-called "post-processing approach" in the case of welding-induced damage assessment.

Finite Element Analysis of Deep Drawing for Axisymmetric Sheet Metal Housing (축대칭 박판 하우징의 디프드로잉 성형에 대한 유한요소법해석 및 파단 원인 분석)

  • 윤정호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.191-198
    • /
    • 1994
  • A practical example of the axisymmetric deep drawing process is simulated by the elastic-plastic finite element analysis using updated Lagrangian approach considering the large deformation. An approach is suggested to solve the problem of the ductile fracture that may encounter during the deep drawing process. The result can be applied to the design of the die for the axisymmetric deep drawing.

Die Shape Optimal Design in Bimetal Extrusion by The Finite Element Method (유한요소법에 의한 이중 금속봉 압출 공정의 금형 형상 최적설계)

  • 변상민;황상무
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.302-319
    • /
    • 1994
  • A new approach to die shape optimal design in bimetal extrusion of rods is presented. In this approach, the design problem is formulated as a constrained optimization problem incorporated with the finite element model, and optimization of the die shape is conducted on the basis of the design sensitivities. The combinations of the core and sleeve materials.

  • PDF

Finite element fracture reliability of stochastic structures

  • Lee, J.C.;Ang, A.H.S.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • This study presents a methodology for the system reliability analysis of cracked structures with random material properties, which are modeled as random fields, and crack geometry under random static loads. The finite element method provides the computational framework to obtain the stress intensity solutions, and the first-order reliability method provides the basis for modeling and analysis of uncertainties. The ultimate structural system reliability is effectively evaluated by the stable configuration approach. Numerical examples are given for the case of random fracture toughness and load.

A Study on the Modification of a Finite Element for Improving Shape Optimization (형상최적화 향상을 위한 유한요소의 개선에 관한 연구)

  • Sung, Jin-Il;Yoo, Jeong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.367-371
    • /
    • 2001
  • In the shape optimization based on the finite element method, the accuracy of finite element analysis of a given structure is important to determine the final shape. In case of a bending dominant problem, finite element solutions by the full integration scheme are not reliable because of the locking phenomenon. Furthermore, in the process of shape optimization, the mesh distortion is large due to the change of the structure outline: therefore, we cannot guarantee the accurate result unless the finite element itself is accurate. We approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two-dimensional simple beam. Results show that the modified finite element have improved the optimization results.

  • PDF

Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams

  • Al-Maliki, Ammar F.H.;Ahmed, Ridha A.;Moustafa, Nader M.;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.177-193
    • /
    • 2020
  • In the present research, dynamic analysis of functionally graded (FG) graphene-reinforced beams under thermal loading has been carried out based on finite element approach. The presented formulation is based on a higher order refined beam element accounting for shear deformations. The graphene-reinforced beam is exposed to transverse periodic mechanical loading. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. Convergences and validation studies of derived results from finite element approach are also presented. This research shows that the resonance behavior of a nanocomposite beam can be controlled by the GPL content and dispersions. Therefore, it is showed that the dynamical deflections are notably influenced by GPL weight fractions, types of GPL distributions, temperature changes, elastic foundation and harmonic load excitation frequency.

Modified DEBA for determining size dependent shear fracture energy of laminates

  • Goodarzi, M. Saeed;Hosseini-Toudeshky, Hossein
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.111-121
    • /
    • 2018
  • It has been argued that fracture energy of composite laminates depends on their thickness and number of layers. In this paper a modified direct energy balance approach (DEBA) has been developed to evaluate the mode-II shear fracture energy for E-glass/Epoxy laminates from finite element model at an arbitrary thickness. This approach considers friction and damage/plasticity deformations using cohesive zone modeling (CZM) and nonlinear finite element modeling. The presence of compressive stress and resulting friction was argued to be a possible cause for the thickness dependency of fracture energy. In the finite element modeling, CZM formulation has been developed with bilinear cohesive constitutive law combined with friction consideration. Also ply element have been developed with shear plastic damage model. Modified direct energy balance approach has been proposed for estimation of mode-II shear fracture energy. Experiments were performed on laminates of glass epoxy specimens for characterization of material parameters and determination of mode-II fracture energies for different thicknesses. Effect of laminate thickness on fracture energy of transverse crack tension (TCT) and end notched flexure (ENF) specimens has been numerically studied and comparison with experimental results has been made. It is shown that the developed numerical approach is capable of estimating increase in fracture energy due to size effect.

Strain based finite element for the analysis of heterogeneous hollow cylinders subjected to thermo-mechanical loading

  • Bouzeriba, Asma;Bouzrira, Cherif
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.825-834
    • /
    • 2022
  • The effectiveness and accuracy of the strain-based approach applied for analysis of two kinds of heterogeneous hollow cylinders subjected to thermal and mechanical loads are examined in this study. One is a multilayer cylinder in which the material in each layer is assumed to be linearly elastic, homogeneous and isotropic. Another is a hollow cylinder made of functionally graded materials with arbitrary gradient. The steady state condition without heat generation is considered. A sector in-plane finite element in the polar coordinate system based on strain approach is used. This element has only three degrees of freedom at each corner node. Analytical solutions available in the literature are presented to illustrate the accuracy of the sector element used. The obtained results for displacements and stresses are shown to be in good agreement with the analytical solutions.

A Study on the Improvement of Shape Optimization associated with the Modification of a Finite Element (유한요소의 개선에 따른 형상최적화 향상에 관한 연구)

  • Sung, Jin-Il;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1408-1415
    • /
    • 2002
  • In this paper, we investigate the effect and the importance of the accuracy of finite element analysis in the shape optimization based on the finite element method and improve the existing finite element which has inaccuracy in some cases. And then, the shape optimization is performed by using the improved finite element. One of the main stream to improve finite element is the prevention of locking phenomenon. In case of bending dominant problems, finite element solutions cannot be reliable because of shear locking phenomenon. In the process of shape optimization, the mesh distortion is large due to the change of the structure outline. So, we have to raise the accuracy of finite element analysis for the large mesh distortion. We cannot guarantee the accurate result unless the finite element itself is accurate or the finite elements are remeshed. So, we approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two and three dimensional simple beam. Results show that the modified finite element has improved the optimization results.