• Title/Summary/Keyword: finite domain

Search Result 1,559, Processing Time 0.027 seconds

A FREQUENCY-DOMAIN METE10D FOR FINITE ELEMENT SOLUTIONS OF PARABOLIC PROBLEMS

  • Lee, Chang-Ock;Lee, Jongwoo;Sheen, Dongwoo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.589-606
    • /
    • 2002
  • We introduce and analyze a frequency-domain method for parabolic partial differential equations. The method is naturally parallelizable. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we propose to solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution in the space-time domain. Existence and uniqueness as well as error estimates are given. Fourier invertibility is also examined. Numerical experiments are presented.

MODULE-THEORETIC CHARACTERIZATIONS OF KRULL DOMAINS

  • Kim, Hwan-Koo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.601-608
    • /
    • 2012
  • The following statements for an infra-Krull domain $R$ are shown to be equivalent: (1) $R$ is a Krull domain; (2) for any essentially finite $w$-module $M$ over $R$, the torsion submodule $t(M)$ of $M$ is a direct summand of $M$; (3) for any essentially finite $w$-module $M$ over $R$, $t(M){\cap}pM=pt(M)$, for all maximal $w$-ideal $p$ of $R$; (4) $R$ satisfies the $w$-radical formula; (5) the $R$-module $R{\oplus}R$ satisfies the $w$-radical formula.

1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake

  • Zhao, Mi;Yin, Houquan;Du, Xiuli;Liu, Jingbo;Liang, Lingyu
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.173-194
    • /
    • 2015
  • Site response analysis is an important topic in earthquake engineering. A time-domain numerical method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary condition with the inputting boundary condition is developed to model the wave absorption and input effects of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the layer system with the artificial boundary condition is transformed equivalently into a 1D one along the vertical direction according to Snell's law. The resulting 1D problem is solved by the finite element method with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer matrix method with fast Fourier transform.

Finite element model updating of an arch type steel laboratory bridge model using semi-rigid connection

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris;Kartal, Murat Emre;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.541-561
    • /
    • 2010
  • This paper presents finite element analyses, experimental measurements and finite element model updating of an arch type steel laboratory bridge model using semi-rigid connections. The laboratory bridge model is a single span and fixed base structure with a length of 6.1 m and width of 1.1m. The height of the bridge column is 0.85 m and the maximum arch height is 0.95 m. Firstly, a finite element model of the bridge is created in SAP2000 program and analytical dynamic characteristics such as natural frequencies and mode shapes are determined. Then, experimental measurements using ambient vibration tests are performed and dynamic characteristics (natural frequencies, mode shapes and damping ratios) are obtained. Ambient vibration tests are performed under natural excitations such as wind and small impact effects. The Enhanced Frequency Domain Decomposition method in the frequency domain and the Stochastic Subspace Identification method in the time domain are used to extract the dynamic characteristics. Then the finite element model of the bridge is updated using linear elastic rotational springs in the supports and structural element connections to minimize the differences between analytically and experimentally estimated dynamic characteristics. At the end of the study, maximum differences in the natural frequencies are reduced on average from 47% to 2.6%. It is seen that there is a good agreement between analytical and experimental results after finite element model updating. Also, connection percentages of the all structural elements to joints are determined depending on the rotational spring stiffness.

Domain Decomposition using Substructuring Method and Parallel Computation of the Rigid-Plastic Finite Element Analysis (부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산)

  • Park, Keun;Yang, Dong-Yol
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.474-480
    • /
    • 1998
  • In the present study a domain decomposition scheme using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. in order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method the program is easily paralleized using the Parallel Virtual machine(PVM) library on a work-station cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various number of subdomains and number of processors. The efficiency of the parallel computation is discussed by comparing the results.

  • PDF

Analysis of Coaxial Line Transmission Charactristics and Shielding Effectiveness Using by Finite Difference Time Domain Method (시간영역 유한차분법을 이용한 동축선로의 전송특성 및 차폐효과 해석)

  • 남상식;윤현보;김정렬;백낙준;우종우
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.4
    • /
    • pp.11-19
    • /
    • 1995
  • In this paper, the Finite Difference Time Domain (FDTD) method is used to analyse the characteristics of the coaxial line transmission coefficent, shielding effectiveness, and compared to results of the moment method. The excitation mode of the Gaussian pulse is assumed to be a TEM-mode instead of the TE or TM-mode and in order to eliminate the reflected wave with in short length of the line. Calculated value of shielding effectiveness of the coaxial line by the FDTD are in good agreement with the results of the moment method.

  • PDF

Design and Analysis of Hollow Section Extrusion using Mismatching Refinement with Domain Decomposition (영역분할에 의한 불일치 격자세분화 기법을 이용한 중공형 압출공정의 설계 및 해석)

  • Park, Geun;Yang, Dong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1016-1023
    • /
    • 2000
  • The present work is concerned with three-dimensional finite element analysis of the hollow section extrusion process using a porthole die. The effects of related design parameters are discussed through the finite element simulation for extrusion of a triply-connected rectangular tubular section. For economic computation, mismatching refinement, an efficient domain decomposition method with different mesh density for each subdomain, is implemented. In order to obtain the uniform flow at the outlet, design parameters such as the hole size and the hole position are investigated and compared through the numerical analysis. Comparing the velocity distribution with that of the original design, it is concluded that the design modification enables more uniform flow characteristics. The analysis results are then successfully reflected on the industrial porthole die design.

Generation of Non-uniform Meshes for Finite-Difference Time-Domain Simulations

  • Kim, Hyeong-Seok;Ihm, In-Sung;Choi, Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.128-132
    • /
    • 2011
  • In this paper, two automatic mesh generation algorithms are presented. The methods seek to optimize mesh density with regard to geometries exhibiting both fine and coarse physical structures. When generating meshes, the algorithms attempt to satisfy the conditions on the maximum mesh spacing and the maximum grading ratio simultaneously. Both algorithms successfully produce non-uniform meshes that satisfy the requirements for finite-difference time-domain simulations of microwave components. Additionally, an algorithm successfully generates a minimum number of grid points while maintaining the simulation accuracy.

Reconstruction of the Electron Density Profile in O-mode Ultrashort Pulse Reflectometry using a Two-dimensional Finite Difference Time Domain

  • Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.52-58
    • /
    • 2013
  • The two-dimensional finite difference time domain algorithm is used to numerically reconstruct the electron density profile in O-mode ultrashort pulse reflectometry. A Gaussian pulse is employed as the source of a probing electromagnetic wave. The Gaussian pulse duration is chosen in such a manner as to have its frequency spectrum cover the whole range of the plasma frequency. By using a number of numerical band-pass filters, it is possible to compute the time delays of the frequency components of the reflected signal from the plasma. The electron density profile is reconstructed by substituting the time delays into the Abel integral equation. As a result of simulation, the reconstructed electron density profile agrees well with the assumed profile.

Application of Modeling of Electromagnetic Wave Propagation for Thickness Determination Using Finite Difference-Time Domain (유한차분 시간영역법을 이용한 콘크리트 두께측정 전자파 모델링의 적용)

  • 임홍철;남국광
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.341-349
    • /
    • 2002
  • The radar method is becoming one of the major nondestructive testing(NDT) techniques lot concrete structures. Numerical modeling of electromagnetic wane is needed to analyze radar measurement results. Finite difference-time domain(FD-TD) method can be used to simulate electromagnetic wave propagation through concrete specimens. Five concrete specimens with different thickness are modeled in 3-dimension. Radar modeling results compare measurement results to find backface of the concrete specimens and measure thickness of the concrete specimens.