• 제목/요약/키워드: finite domain

검색결과 1,559건 처리시간 0.026초

Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.127-153
    • /
    • 2012
  • This paper presents an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems, in the low-and medium-frequency domains and this includes uncertainty quantification. The system under consideration is constituted of a deformable dissipative structure that is coupled with an internal dissipative acoustic fluid. This includes wall acoustic impedances and it is surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to the prescribed mechanical forces. An efficient reduced-order computational model is constructed by using a finite element discretization for the structure and an internal acoustic fluid. The external acoustic fluid is treated by using an appropriate boundary element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid that includes wall acoustic impedance and a model of uncertainty in particular for the modeling errors. This advanced computational formulation, corresponding to new extensions and complements with respect to the state-of-the-art are well adapted for the development of a new generation of software, in particular for parallel computers.

이종재료로 구성된 영역의 응력장 해석 개선방안 연구 (A study on the improvement method of the stress field analysis in a domain composed of dissimilar materials)

  • 송기남
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1844-1851
    • /
    • 1997
  • Displacement fields and interface stresses are obtained by modifying the potential energy functional with a penalty function which enforces the continuity of stresses at the interface of two-materials. Based on the displacement field and the interface stresses, a new methodology to generate a continuous stress field over the entire domain including the interface of the dissimilar materials has been proposed by combining the L$^{2}$ projection method of stress-smoothing and the Loubignac's iterative method of improving the displacement field. Stress analysis was carried out on two examples which are made of highly dissimilar materials. As a result of the analysis, it is found that the proposed method provides improved continuity of the stress field over the entire domain as well as predicting accurate nodal stresses at the interface. In contrast, the conventional displacement-based finite element method provides significant stress discontinuties at the interfaces. In addition, it was found that the total strain energy evaluated from the improved continuous stress field converge to the exact value as increasing the number of iterations in the proposed method.

Analysis of Shielded Twisted Pair Cable to External Field Coupling by Expanded Chain Matrix Modeling

  • Cho, Yong-Sun;Jung, Hyun-Kyo;Cheon, Changyul;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2049-2057
    • /
    • 2014
  • In this paper, a numerical method for analyzing coupling between high-altitude electromagnetic pulse (HEMP) as external field and a shielded twisted pair (STP) cable is proposed, which is based on an expanded chain matrix. Load responses of electromagnetic (EM) field excitation in uniform transmission line (TL) are solved by Baum-Liu-Tesche (BLT) equations in frequency domain, however, it is difficult to apply BLT equations to solve load responses of STP cable because the iteratively changing configuration of each twisted pairs are involved in cable. To avoid this problem and decrease memory and CPU time, we proposed the expanded chain matrix modeling method that is calculated using ABCD parameters, and applied multi-conductor transmission line (MTL) theory to consider the EMP coupling effectiveness of each twisted pairs. The results implemented by the proposed method are presented and compared with those obtained by the finite-difference time domain (FDTD) method as a kind of 3D full wave analysis.

유전자 알고리즘을 이용한 T-형 복합재료 날개의 플러터 속도 최적설계 (Optimum Design of a Composite T-tail Configuration for Maximum Flutter Speed Using Genetic Algorithm)

  • 알렉산더 바비;오세원;김동현
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.173-178
    • /
    • 2005
  • In this paper, an efficient and robust analysis system for the flutter optimization of laminated composite wings has been developed using the coupled computational method based on the genetic algorithm. General three-dimensional doublet-lattice method is efficiently used to compute generalized aerodynamic forces of T-tail configuration in the frequency domain. Structural dynamic analyses of laminated composite T-tail models are conducted using finite clement method. The classical P-k flutter analysis technique is applied to effectively solve the aeroelastic governing equations in the frequency domain. Optimum design studies using genetic algorithm have been conducted in order to obtain maximum flutter stability of a composite T-tail configuration. The results show that flutter stability can be significantly increased using composite materials with proper optimum design concepts even for the same weight and shape condition. In the view point of engineering design, it is also importantly shown that the optimization of the vertical wing part is highly effective comparing to the optimization of horizontal wing part.

  • PDF

시간영역에서 십자형 터널 내의 전파 전파의 전송 효율에 관한연구 (A study on the transmission efficiency of electromagnetic wave propagation in cross type tunnels in time domain)

  • 김기래
    • 전자공학회논문지D
    • /
    • 제34D권4호
    • /
    • pp.1-7
    • /
    • 1997
  • 십자형 및 변형 십자형의 2차원 터널 내에서 전파 전파 문제를 FVTD(finite volume time domain)법을 적용하여 시간영역에서 해석하였다. FVTD법은 임의의 미소 다면체 셀(cell)에 대하여 맥스웰 방정식(Maxwell's equation)을 체적 적분한 것에 이산화하여 나타낸 차분 방정식이다. 이 방식의 장점은 불균질 매질을 포함하는 임의 형태의 경계치 문제를 쉽게 계산할 수 있는데 있다. 본 논문에서는 FVTD법을 이용하여 십자형 터널에 대해 전자파의 전파 현상을 수치 계산을 하고, 유효성을 검증하기 위해 실험치와 비교하였다. 수치 계산의 종단에 있는 흡수 경계 조건은 손실 매질에 있느 PML(Perfect Matched Layer)흡수 경계 조건을 적용했다.

  • PDF

영역분할법 (domain decomposition)과 TLM법을 이용한 회전기의 비선형 유한 요소 해석 (A Novel Finite Element Technique for analyzing Saturated Rotating Machines Using the Domain Decomposition and TLM Method)

  • 주현우;임창환;이창환;김홍규;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.623-625
    • /
    • 2000
  • For the finite element analysis of highly saturated rotating machines involving rotation of a rotor such as dynamic analysis. cogging torque analysis and etc, so much time is needed because a new system matrix equation should be solved for each iteration and time step. It is proved in this paper that. in linear systems. the computational time can be greatly reduced by using the domain decomposition method (DDM). In nonlinear systems. however. this advantage vanishes because the stiffness matrix changes at each iteration especially when using the Newton-Raphson (NR) method. The transmission line modeling (TLM) method resolves this problem because in TLM method the stiffness matrix does not change throughout the entire analysis. In this paper, a new technique for FEA of rotating machines including rotation of rotor and non-linearity is proposed. This method is applied to a test problem. and compared with the conventional method.

  • PDF

시간영역 유한차분법을 이용한 전자기 결합 광대역 마이크로스트립 안테나의 파라메타 최적화 (Parammeter Optimization of the Electromagnetically Coupled Broadband Microstrip Antenna by Finite Difference Time Domain Method)

  • 김정렬;윤현보
    • 한국전자파학회지:전자파기술
    • /
    • 제6권1호
    • /
    • pp.17-27
    • /
    • 1995
  • 본 논문에서는 시간영역 유한차분법(FDTD)을 이용하여 전자기 결합 광대역 마이크로스트립 안테나의 특성 을 해석하고 파라메타를 최적화 하였다. 전자기 결합 마이크로스트립 안테나는 급전 선로에 짧은 동조 스터브 틀 연결하면 13%정도의 넓은 대역 특성을 가지며, 동조 스터브의 폭, 길이, 위치 둥의 변화에 따라 안테나의 특 성이 변한다. 시간영역에서의 유한차분볍에 의한 수치해석 결과들 푸리어 변환하여, 주파수 영역에서 공진 주 파수, 반사 손실, 전압정재파비 및 입력 임피이던스 동을 계산하였다. 설계 제작한 안테나의 측정 결과와 비교 하여 시간영역 유한차분법의 계산 결과가 잘 일치함을 보였다. 최적화 후 약 15% 정도의 최대 대역폭을 얻었다

  • PDF

CPU 클러스터 구축 및 3차원 공간분할 병렬 FDTD 알고리즘 구현 (Construction of a CPU Cluster and Implementation of a 3-D Domain Decomposition Parallel FDTD Algorithm)

  • 박성민;추광욱;주세훈;박윤미;김기백;정경영
    • 한국전자파학회논문지
    • /
    • 제25권3호
    • /
    • pp.357-364
    • /
    • 2014
  • 본 연구에서는 빠르게 전자파 해석을 수행할 수 있는 병렬 유한차분 시간영역(Finite-Difference Time-Domain: FDTD) 알고리즘을 구현하기 위하여 CPU 클러스터를 구축하였다. 병렬 FDTD 알고리즘은 단일 프로세서를 이용한 FDTD 알고리즘에 비해 해석 시간을 크게 줄일 수 있으며, 전기적으로 매우 큰 구조물에 대한 전자파 해석도 가능하다. 본 연구팀에서는 CPU 클러스터 기반의 병렬 FDTD 알고리즘에서 요구되는 프로세스 간의 통신을 위해 MPI(Message Passing Interface) 라이브러리를 이용하였으며, 3차원 공간분할을 적용하여 프로세스 간의 통신 시간을 최소화하였다. 단일 프로세서를 이용한 FDTD 알고리즘 대비 CPU 클러스터 기반의 병렬 FDTD 알고리즘의 계산속도 향상도를 기본 모드와 하이퍼 모드에서 분석하였으며, 전기적으로 매우 큰 콘크리트 구조물의 전자파 해석을 하였다.

해석적 주파수종속 무한요소를 사용한 시간영역해석의 지반-구조물의 상호작용을 고려한 지진해석 (Time Domain Soil-Structure Interaction Analysis for Earthquake Loadings Based on Analytical Frequency-Dependent Infinite Elements)

  • Kim, Doo-Kie;Yun, Chung-Bang
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.121-128
    • /
    • 1999
  • This paper presents a time domain method for soil-structure interaction analysis for seismic loadings. It is based on the finite element formulation incorporating analytical frequency-dependent infinite elements for the far field soil. The dynamic stiffness matrices of the far field region formulated using the present method in frequency domain can be easily transformed into the corresponding matrices in time domain. At first, the equivalent earthquake forces are evaluated along the interface between the near and the far fields from the free-field response analysis carried out in frequency domain, and the results are transformed into the time domain. An efficient procedure is developed for the convolution integrals to evaluate the interaction force along the interface, which depends on the response on the interface at the past time instances as well as the concurrent instance. Then, the dynamic responses are obtained for the equivalent earthquake force and the interaction force using Newmark direct integration technique. Since the response analysis is carried out in time domain, it can be easily extended to the nonlinear analysis. Example analysis has been carried out to verify the present method in a multi-layered half-space.

  • PDF

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF