• Title/Summary/Keyword: finite domain

Search Result 1,559, Processing Time 0.024 seconds

A Study on the Development of a Three Dimensional Structured Finite Elements Generation Code (3차원 정렬 유한요소 생성 코드 개발에 대한 연구)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.11-17
    • /
    • 1999
  • A three dimensional finite element generation code has been developed attaching simple blocks. Block can be either a quadrature or a cube depending on the dimension of a subject considered. Finite element serendipity basis functions are employed to map elements between the computational domain and the physical domain. Elements can be generated with wser defined progressive ratio for each block. For blocks to be connected properly, a block should have a consistent numbering scheme for vertices, side nodes, edges and surfaces. In addition the edge information such as the number of elements and the progressive ratio for each direction should also be checked for interfaces to have unique node numbers. Having done so, user can add blocks with little worry about the orientation of blocks, Since the present the present code has been written by a Visual Basic language, it can be developed easily for a user interactive manner under a Windows environment.

  • PDF

A Note on S-Noetherian Domains

  • LIM, JUNG WOOK
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.507-514
    • /
    • 2015
  • Let D be an integral domain, t be the so-called t-operation on D, and S be a (not necessarily saturated) multiplicative subset of D. In this paper, we study the Nagata ring of S-Noetherian domains and locally S-Noetherian domains. We also investigate the t-Nagata ring of t-locally S-Noetherian domains. In fact, we show that if S is an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian domain) if and only if the Nagata ring $D[X]_N$ is an S-Noetherian domain (respectively, locally S-Noetherian domain). We also prove that if S is an anti-archimedean subset of D, then D is a t-locally S-Noetherian domain if and only if the polynomial ring D[X] is a t-locally S-Noetherian domain, if and only if the t-Nagata ring $D[X]_{N_v}$ is a t-locally S-Noetherian domain.

NON-ITERATIVE DOMAIN DECOMPOSITION METHOD FOR THE CONVECTION-DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

  • Younbae Jun
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.109-118
    • /
    • 2024
  • This paper proposes a numerical method based on domain decomposition to find approximate solutions for one-dimensional convection-diffusion equations with Neumann boundary conditions. First, the equations are transformed into convection-diffusion equations with Dirichlet conditions. Second, the author introduces the Prediction/Correction Domain Decomposition (PCDD) method and estimates errors for the interface prediction scheme, interior scheme, and correction scheme using known error estimations. Finally, the author compares the PCDD algorithm with the fully explicit scheme (FES) and the fully implicit scheme (FIS) using three examples. In comparison to FES and FIS, the proposed PCDD algorithm demonstrates good results.

Practical Numerical Model for Wave Propagation and Fluid-Structure Interaction in Infinite Fluid (무한 유체 영역에서의 파전파 해석 및 유체-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Cho, Jeong-Rae;Han, Seong-Wook;Lee, Jin Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.427-435
    • /
    • 2021
  • An analysis considering the fluid-structure interaction is required to strictly evaluate the seismic behavior of facilities such as, environmental facilities and dams, that store fluids. Specifically, in the case of an infinite domain in the upstream direction, such as a dam-reservoir system, this should be carefully considered. In this study, we proposed a practical numerical model for both wave propagation and fluid-structure interaction analyses of an infinite domain, for a system with a semi-infinite domain such as a dam-reservoir system. This method was applicable to the time domain, and enabled accurate boundary analysis. For an infinite fluid domain, a small number of mid-point integrated acoustic finite elements were applied instead of a general acoustic finite element, and a viscous boundary was imposed on the outermost boundary. The validity and accuracy of the proposed method were secured by comparing analytic solutions of a reservoir having infinite domain, with the parametric analysis results, for the number of elements and the size of the modeling region. Furthermore, the proposed method was compared with other fluid-structure interaction methods using additional mass.

A Finite Element Based PML Method for Time-domain Electromagnetic Wave Propagation Analysis (시간영역 전자기파 전파해석을 위한 유한요소기반 PML 기법)

  • Yi, Sang-Ri;Kim, Boyoung;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • This paper presents a new formulation for transient simulations of microwave propagation in heterogeneous unbounded domains. In particular, perfectly-matched-layers(PMLs) are introduced to allow for wave absorption at artificial boundaries used to truncate the infinite extent of the physical domains. The development of the electromagnetic PML targets the application to engineering mechanics problems such as structural health monitoring and inverse medium problems. To formulate the PML for plane electromagnetic waves, a complex coordinate transformation is introduced to Maxwell's equations in the frequency-domain. Then the PML-endowed partial differential equations(PDEs) for transient electromagnetic waves are recovered by the application of the inverse Fourier transform to the frequency-domain equations. A mixed finite element method is employed to solve the time-domain PDEs for electric and magnetic fields in the PML-truncated domain. Numerical results are presented for plane microwaves propagating through concrete structures, and the accuracy of solutions is investigated by a series of error analyses.

The Nonlinear Equalizer for Super-RENS Read-out Signals using an Asymmetric Waveform Model (비대칭 신호 모델을 이용한 super-RENS 신호에서의 비선형 등화기)

  • Moon, Woosik;Park, Sehwang;Lee, Jieun;Im, Sungbin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.70-75
    • /
    • 2014
  • Super-resolution near-field structure (super-RENS) read-out samples are affected by a nonlinear and noncausal channel, which results in inter-symbol interference (ISI). In this study, we investigate asymmetry or domain bloom in super-RENS in terms of equalization. Domain bloom is caused by writing process in optical recording. We assume in this work that the asymmetry symbol conversion scheme is to generate asymmetric symbols, and then a linear finite impulse response filter can model the read-out channel. For equalizing this overall nonlinear channel, the read-out signals are deconvolved with the finite impulse response filter and its output is decided based on the decision rule table that is developed from the asymmetry symbol conversion scheme. The proposed equalizer is investigated with the simulations and the real super-RENS samples in terms of raw bit error rate.

A Comparative Study on Interrelation between FDTD Source Models for Coaxial-Probe Feeding Structures (동축 프로브 급전구조에 대한 FDTD 전원 모델들의 상호 관계에 관한 비교 연구)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.114-122
    • /
    • 2014
  • For an efficient finite-difference time-domain(FDTD) analysis of coaxial-probe feeding structures in radio frequency(RF) and microwave bands, an interrelation between equivalent source modeling techniques is investigated. In existing literature, equivalent source models with delta-gap or magnetic-frill concepts have been developed by many researchers. It is well known that FDTD implementation and computational accuracy of these source models are slightly different. In this paper, the interrelation between FDTD equivalent source models for coaxial feeding structures under the quasi-static approximation(QSA) is presented. As a function of FDTD equivalent source models, time-domain and frequency-domain responses of a coaxial-probe fed conical monopole antenna are calculated numerically. And comparison results of computational accuracy and efficiency are provided.

Comparison of Time-Domain Imaging Algorithms for Ultra-Wideband Radar with One-Dimensional Synthetic Aperture (1차원 합성 개구면을 가진 초광대역 레이더의 시영역 기반 영상화 기법 비교)

  • Kim, Dae-Man;Hong, Jin-Young;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1175-1184
    • /
    • 2008
  • Delay-sum back projection(DSBP) algorithm and the time reversal algorithm based on the finite-difference time-domain method are compared. The two algorithms, which operate in the time domain, can process the ultra-wideband (UWB) radar data to generate images that are close to the original location and shape of the target. For the experiment, the UWB radar consists of a network analyzer, a resistive V dipole antenna, a scanner, and a control computer. The radar aperture is synthesized by linearly scanning the antenna. A calibration procedure is applied to the measured data to remove signal distortion and clutter. The two algorithms are applied to the same data on the same platform. It is shown that the DSBP algorithm produces better images but takes longer time to produce the images than the FDTD-TR algorithm.

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Interaction and multiscale mechanics
    • /
    • v.6 no.4
    • /
    • pp.357-375
    • /
    • 2013
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.