• 제목/요약/키워드: finite differences method

Search Result 218, Processing Time 0.026 seconds

AN ANALYSIS OF STRESS DISTRIBUTION AROUND THE IMPLANT ACCORDING TO THE BONE QUALITY AND BITE FORCE: FINITE ELEMENT METHOD (저작압이 임프란트 주위골 내 응력분포에 미치는 영향에 관한 연구)

  • Hyun Ki-Bong;Lee Sun-Hyung;Chang Ik-Tae;Yang Jae-Ho;Shin Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.4
    • /
    • pp.391-409
    • /
    • 2001
  • Since the early study about the osseointegration, lots of researches have been performed to increase the success rate and the stress around the implant in the jaw bone has been considered as one of the causes of failure. The purpose of this study was to examine the relationship between the implant failure and the stress by analysing the influence of different bone quality and bite force of some foods on the stress distribution around the implant, and to estimate the treatment result according to the bone quality and dietary pattern of patients. Bone quality was divided in 4 groups and models were drawn with the assumption that thread type implant(Nobel Biocare AB, Goteborg, Sweden) of 3.75mm diameter, 13mm length was installed to the bones. Various bite forces were applied to the occlusal surface of superstructure and the stress distributed around the implant were analysed with finite element analysis program. The results were as follows ; 1. The stress was changed proportionally to the bite forces of foods at all measuring points in all load cases. 2. The stress at the marginal bone was higher than that of the other measuring points in all load cases, and it was decreased at the first thread area. 3. The stress at the marginal bone was highest in type IV bone in all load cases. Especially it was twice those of other bone types at the bucco-lingual marginal bone and 50% higher at the mesio-distal marginal bone. 4. The stress at the bucco-lingual sides of the bone around the apical portions of implant showed little differences among the bone types, while type IV bone showed lower stress concentration than the other bone types in the mesio-distal sides. 5. Under the buccal oblique load ($15^{\circ}$ ), the stress at the lingual marginal bone was higher than that of buccal marginal bone, and the difference between the two points was almost same regardless of bone types.

  • PDF

3-dimensional finite element analysis of maxillary molar distalization using R-jig with TADs (TADs와 R-jig를 이용한 상악 구치 원심 이동에 관한 3차원 유한요소 분석)

  • Tark, Myung-Hyun;Lee, Keunyoung;Cho, Jin-Woo;Chee, Young-Deok;Cho, Jin-Hyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.4
    • /
    • pp.265-277
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate the differences of displacement pattern depending on type of sliding jig and application method during maxillary molar distalization with temporary anchorage devices (TADs). Materials and Methods: Maxilla with normal tooth size and arch shape was selected to create a 3-dimensional finite element model, which included the bracket, orthodontic main archwire, removable sliding jig (R-jig). The orthodontic mini-implant anchorage was set 8 mm superiorly from main archwire, buccally between the second premolar and first molar. The base experimental design was Condition 1, which was composed $0.019{\times}0.025$ inch stainless steel (SS) of wire size of R-jig, 200 gm force, un-tied state. And the other designs varied to wire size of R-jig, magnitude of force. The results are as follows. Results: As the wire size of R-jig was increased, the deformation of R-jig was decreased. However, the displacement of second molar wasn't different each other. As the force to second molar was increased, the more displacement of second molar was observed, and the more distal tipping movement, vetical displacement was observed. Conclusion: R-jig can get distal teeth movement in orthodontic treatment without side effects.

A 3-D finite element analysis on the mandibular movement pattern and stress distribution during symphyseal widening (하악 이부확장 시 하악골 이동 양상과 응력 분포에 관한 삼차원 유한요소법적 연구)

  • Lee, Do-Hoon;Hong, Hyun-Sil;Chae, Jong-Moon;Jo, Jin-Hyung;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.38 no.1
    • /
    • pp.13-30
    • /
    • 2008
  • Objective: The objective of this study was to evaluate the displacement pattern and the stress distribution of the finite element model 3-D visualization during symphyseal widening according to the osteotomy position, osteotomy type, and distraction device. Methods: The kinds of distraction devices used were tooth-borne type, hybrid type, bone-borne type and tooth-borne type $30^{\circ}$ angulated, and the kinds of osteotomy design were vertical osteotomy line between the central incisors and step osteotomy line through the symphysis. Results: All reference points of the mandible including the condyles were displaced laterally irrespective of the osteotomy position, osteotomy method and distraction device. The anteroposterior or vertical displacements showed small differences between the groups. The widening pattern of the osteotomy line in the tooth-borne type of device was v shaped, and that of bone-borne type was a reverse v shape. However, the pattern in the hybrid type was parallel. The lateral displacement of the mandibular angle by the bone-borne device was more remarkable than the other types of devices. The displacement by the $30^{\circ}$ angulated tooth-borne type was different between the left and right sides in both the transverse and anteroposterior aspects. Conclusion: The design of the distraction devices and osteotomy line can influence the displacement pattern and the stress distribution during mandibular symphyseal distraction osteogenesis procedures.

Fatigue Reliability Evaluation of an In-service Steel Bridge Using Field Measurement Data (현장계측데이터를 활용한 공용 중 강교량의 피로 신뢰도평가)

  • Lee, Sang Hyeon;An, Lee-Sak;Park, Yeun Chul;Kim, Ho-Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.599-606
    • /
    • 2022
  • Strain gauges and the bridge weigh-in-motion (BWIM) method are the representative field measurement methods used for fatigue evaluationsof a steel bridge-in-service. For a fatigue reliability evaluation to assess fatigue damage accumulation, the effective stress range and the number of stress cycles applied as the fatigue details can be estimated based on the AASHTO Manual for Bridge Evaluations with the field measurement data of the target bridge. However, the procedure for estimating the effective stress range and the stress cycles from field measurement data has not been explicitly presented. Furthermore, studies that quantitatively compare differences in fatigue evaluation results according to the field measurement data type or processing method used are still insufficient. Here, a fatigue reliability evaluation is conducted using strain and BWIM data that are measured simultaneously. A frame model and a shell-solid model were generated to examine the effect of the accuracy of the structural analysis model when using BWIM data. Also, two methods of handling BWIM data when estimating the effective stress range and average daily cycles are defined. As a result, differences in evaluation results according to the type of field measurement data used, the accuracy of the structural analysis model, and the data handling method could be quantitatively confirmed.

Structural System Parameter Estimation using Strain Output Feedback (스트레인 출력 되먹임을 이용한 구조 시스템 계수 추정)

  • Ha, Jae-Hoon;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.124-127
    • /
    • 2005
  • As computer capability and test skill become more and more advanced, finite element method and modal test are being widely applied in engineering design. In order to correlate and reconcile the inevitable discrepancies between the analytical and experimental models, many techniques have been developed. Among these methods, multiple-system methods are known as the effective tools in that they can supply the rich modal data available which are experimentally obtained. These abundant modal data can help structural system parameters estimated well. Multiple-system methods can be classified into the structural modification methods and feedback controller methods. The structural modification methods need the physical attachment of structures and their concept may limit the application of them. To overcome this drawback, the feedback controller methods are addressed which enable us to get more modal data without the structural change. Mode decoupling controller(MDC), one of them, is to use acceleration out)ut feedback to perturb an open-loop system. The output feedback controller generally cannot guarantee the stability of a closed-loop system. However, MDC can solve this problem under the certain constraints. So far, MDC utilizes accelerations as the sensor signals. In this research, strain sensors are going to be picked up to apply to the MDC. Strain output is recently used for structural system identification due to the drastically improved and miniaturized strain sensor. In this paper, we show that the MDC using strain output has differences compared with acceleration output in estimating the structural system parameters. The associated simulation is performed to demonstrate the above mentioned characteristics.

  • PDF

Investigation of the Regression Analysis Method for a Quantitative Evaluation of Implant Crestal Bone Stresses (회귀분석법에 의한 임플란트 경부골 응력의 정량적 분석에 대한 연구)

  • Kim, Woo-Shik;Jo, Kwang-Hun;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.299-310
    • /
    • 2008
  • In this study, the regression analysis method was tested for the estimation of peak stress at stress concentration area in the cervical bone. Submerge type EZ plus implant (Megagen. Daegu, Korea), 4.1 mm in cervical diameter and 9.6 mm in endosseous length, were axisymmetrically modelled together with surrounding alveolar bone of which the width was 10 mm. Vertical force of 100 N was applied to a head of crown above 8.5 mm from the outer surface of the cortical bone. Four different mesh models were composed of differently sized elements in vicinity of sharp corners, and they include 6 stress monitoring points that are located in the same geometrical points regardless of the differences in the meshes. Primary consideration was given to the stresses in the cortical bone surrounding the implant neck. The results showed that virtually all the stresses were concentrated in the cortical bone regardless of mesh designs. The peak stresses were successfully calculated by a regression analysis in a stable manner, as far as the mesh is designed to represent the acute gradient of stresses near the sharp corner.

A Study on the Behavior of Metal Touch Connection subject to Connection Types (이음방식 및 틈의 위치에 따른 메탈터치 이음부의 거동에 관한 연구)

  • Hong, Kap Pyo;Kim, Seok Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.661-669
    • /
    • 2004
  • In the steel structure of high-rise buildings, a connection analysisand a column design have been made after welding and bolting suitable gaps. Each country, however, has different codes, and such differences are very big. American steel has been designed according to a code that all axial loads can be carried from the upper parts to the lower parts as determined by the designer, but Korean and Japanese steel have been designed by 1/4 of the standard of all axial loads. In this paper, a metal touch experiment was done as an intermediation parameter with a connecting location and a connecting method for economic and constructive efficiency. Every specimen is tested by a low-to-high displacement control to grasp ultimate strength, displacement, the connection's lateral deflection, and stress. The results of the test were compared and analyzed.

-An Analysis of Pre-Stressed Concrete Farn Sild by the Finite Element Method- (유한요소법에 의한 PC 농업용 사이로의 해석에 관한 연구 -제2보 탄성지반에 놓인 경우-)

  • 조진구;조현영;박병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.3
    • /
    • pp.73-83
    • /
    • 1982
  • study aims to derive a rational method for the analysis of the farm silo supported on an elastic foundation in which it is assumed that the reaction pressure of the soil at a point is proportional to the deflection at that point. In order to investigate the effects of an elastic foundation on the behaviour of the structures on it, the analysis of the farm silo resting on an elastic foundation was compared with the solution that the ground support may be assumed uniform (which was obtained from part I of this paper). To calculate the deformation of an elastic foundation, Boussinesq's solution which allows an interaction of the various parts of ground was adopted. In this case, the foundation was treated as a superparametric element additionally. In the evaluation of an element stiffness matrix, Gauss quadrature' was used. In above numerical integration, 3-point rule for the farm silo wall and the footing was introduced and 2-point rule for the evaluation of a reaction between the footing and the elastic foundation was adopted. The stresses of a farm silo on an elastic foundation were smaller than those which the distribution of contact pressure between the footing and the soil is assumed uniformly. Since the differences of stresses were remarkable in PS structures than RC structures, it is desirable that designers take into account the effect of an elastic foundation for the case of PS structures. It can be noted that while the effect of an elastic foundation was more conspicuously observed in near of the ground, the value of stresses at far from the soil was little affected by an supported soil.

  • PDF

Further Improvement of Direct Solution-based FETI Algorithm (직접해법 기반의 FETI 알고리즘의 개선)

  • Kang, Seung-Hoon;Gong, DuHyun;Shin, SangJoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.249-257
    • /
    • 2022
  • This paper presents an improved computational framework for the direct-solution-based finite element tearing and interconnecting (FETI) algorithm. The FETI-local algorithm is further improved herein, and localized Lagrange multipliers are used to define the interface among its subdomains. Selective inverse entry computation, using a property of the Boolean matrix, is employed for the computation of the subdomain interface stiffness and load, in which the original FETI-local algorithm requires a full matrix inverse computation of a high computational cost. In the global interface computation step, the original serial computation is replaced by a parallel multi-frontal method. The performance of the improved FETI-local algorithm was evaluated using a numerical example with 64 million degrees of freedom (DOFs). The computational time was reduced by up to 97.8% compared to that of the original algorithm. In addition, further stable and improved scalability was obtained in terms of a speed-up indicator. Furthermore, a performance comparison was conducted to evaluate the differences between the proposed algorithm and commercial software ANSYS using a large-scale computation with 432 million DOFs. Although ANSYS is superior in terms of computational time, the proposed algorithm has an advantage in terms of the speed-up increase per processor increase.

Comparison of analysis methods of estimating behavior of soil mass above rigid culvert (암거 상부지반의 거동 평가를 위한 해석법 비교)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.71-77
    • /
    • 2018
  • In order to estimate behavior of soil mass which is located straight up of reinforced concrete culvert, Ritz method and FEM were applied and arching effects between the soil mass and adjacent soil were considered for the analyses. Analysis results obtained from the Ritz method and finite element method were compared with analytical solution. In the case of estimating nodal forces considered in FEM, caution is needed that shear stress depending on depth from ground surface should be reflected regardless of local coordinate system. Comparing the displacements computed from Ritz method with those of the analytic solution, it is seen that as the power of assumed displacement function increases, differences between the computed displacements and those of analytic solution decreases. It seems that displacements of FEM becomes closer to those of analytical solution as the number of elements are increased. It is seen that stresses computed from the Ritz method don't get closer to those of the analytic solution as the power of assumed displacement function. Stresses from FEM become closer to those of analytic solution as the number of elements are increased. Comparing the analysis results from the Ritz method and FEM with those of analytic solution, it can be seen that FEM is more reliable than Ritz method.