DOI QR코드

DOI QR Code

Fatigue Reliability Evaluation of an In-service Steel Bridge Using Field Measurement Data

현장계측데이터를 활용한 공용 중 강교량의 피로 신뢰도평가

  • 이상현 (서울대학교 건설환경공학부) ;
  • 안이삭 (서울대학교 건설환경공학부) ;
  • 박연철 (한남대학교 토목환경공학전공) ;
  • 김호경 (서울대학교 건설환경공학부)
  • Received : 2021.11.24
  • Accepted : 2022.03.03
  • Published : 2022.10.01

Abstract

Strain gauges and the bridge weigh-in-motion (BWIM) method are the representative field measurement methods used for fatigue evaluationsof a steel bridge-in-service. For a fatigue reliability evaluation to assess fatigue damage accumulation, the effective stress range and the number of stress cycles applied as the fatigue details can be estimated based on the AASHTO Manual for Bridge Evaluations with the field measurement data of the target bridge. However, the procedure for estimating the effective stress range and the stress cycles from field measurement data has not been explicitly presented. Furthermore, studies that quantitatively compare differences in fatigue evaluation results according to the field measurement data type or processing method used are still insufficient. Here, a fatigue reliability evaluation is conducted using strain and BWIM data that are measured simultaneously. A frame model and a shell-solid model were generated to examine the effect of the accuracy of the structural analysis model when using BWIM data. Also, two methods of handling BWIM data when estimating the effective stress range and average daily cycles are defined. As a result, differences in evaluation results according to the type of field measurement data used, the accuracy of the structural analysis model, and the data handling method could be quantitatively confirmed.

공용 중 강교량의 피로 평가에 활용할 수 있는 현장계측 데이터에는 대표적으로 변형률 계측과 Brigde Weight-In-motion (BWIM)이 있다. AASHTO The Manual For Bridge Evaluation에 따라, 대상 교량에서 계측된 데이터로부터 피로 상세에 가해지는 유효응력범위 및 반복응력 횟수를 추정할 수 있다. 추정된 유효응력범위와 반복응력 횟수를 통해 피로 손상 누적에 의한 신뢰도분석을 수행할 수 있다. 하지만 현장계측 데이터로부터 유효응력범위 및 응력범위 반복횟수를 추정하는 절차가 평가규정에 구체적으로 제시되어 있지 않고, 계측 데이터의 종류 또는 처리방법에 따른 피로 평가결과의 차이를 정량적으로 비교한 연구는 아직 미비한 실정이다. 본 연구에서는 공용 중 교량에서 동시에 계측한 변형률계 및 BWIM 데이터를 활용하여 피로 신뢰도평가를 수행하여, 활용되는 현장계측 데이터의 종류에 따른 평가결과의 차이에 대해 정량적으로 검토하였다. 이때, BWIM 데이터를 활용한 피로 신뢰도평가 시 구조해석모델의 정밀성이 평가결과에 미치는 영향을 검토하기 위해 평가 대상 교량의 뼈대요소 해석모델과 Shell-Solid 해석모델을 구축하였다. 또한, BWIM 데이터로부터 유효응력범위와 반복응력 횟수를 추정하기 위한 두 종류의 데이터 처리 방법을 정의하였으며, 이로 인한 피로 신뢰도 차이 역시 검토하였다.

Keywords

Acknowledgement

이 연구는 서울대학교 건설환경종합연구소를 통해 지원된 국토교통부 건설기술연구개발사업의 연구비 지원(21SCIP-B128568-05)에 의해 수행되었습니다. 이에 감사드립니다. 본 논문은 2021 CONVENTION 논문을 수정·보완하여 작성되었습니다.

References

  1. American Association of State Highway and Transportation Officials (AASHTO) (2018). AASHTO the manual for bridge evaluation, Washington, D.C.
  2. American Association of State Highway and Transportation Officials (AASHTO) (2020). AASHTO LRFD bridge design specifications, Washington, D.C.
  3. Chung, H. Y. (2004). Fatigue reliability and optimal inspection strategies for steel bridges, Ph.D. Dissertation, The University of Texas at Austin, Texas, USA.
  4. Connor, R. J., Fisher, J. W., Hodgson, I. C. and Bowman, C. A. (2004). Results of field monitoring prototype floorbeam connection retrofit details on the Birmingham bridge, ATLSS Report, No. 04-04, Lehigh University's Center for Advanced Technology for Large Structural Systems (ATLSS), Bethlehem, P.A.
  5. Dassault Systemes (2021). Abaqus 2021, Providence, RI: Dassault Systemes Simulia Corp.
  6. Deng, Y., Li, A. Q. and Feng, D. M. (2018). "Fatigue reliability assessment for orthotropic steel decks based on long-term strain monitoring." Sensors, Vol. 18, No. 1, 181. https://doi.org/10.3390/s18010181
  7. Downing, S. D. and Socie, D. F. (1982). "Simple rainflow counting algorithms." International Journal of Fatigue, Vol. 4, No. 1, pp. 31-40. https://doi.org/10.1016/0142-1123(82)90018-4
  8. Frangopol, D. M., Strauss, A. and Kim, S. Y. (2008). "Bridge reliability assessment based on monitoring." Journal of Bridge Engineering, Vol. 13, No. 3, pp. 258-270. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:3(258)
  9. Guo, T., Frangopol, D. M. and Chen, Y. W. (2012). "Fatigue reliability assessment of steel bridge details integrating weigh-in-motion data and probabilistic finite element analysis." Computers and Structures, Vol. 112, pp. 245-257.
  10. Hobbacher, A. F. (2009). "The new IIW recommendations for fatigue assessment of welded joints and components - A comprehensive code recently updated." International Journal of Fatigue, Vol. 31, No. 1, pp. 50-58. https://doi.org/10.1016/j.ijfatigue.2008.04.002
  11. Hodgson, I. C., Connor, R. J., Mahmoud, H. N. and Bowman, C. A. (2006). Approaches to the fort duquesne bridge retrofit of fatigue and fracture details, ATLSS Report, No. 06-06, Lehigh University's Center for Advanced Technology for Large Structural Systems (ATLSS), Bethlehem, P.A.
  12. Iatsko, O., Babu, A. R., Stallings, J. M. and Nowak, A. S. (2020). "Weigh-in-motion-based fatigue damage assessment." Transportation Research Record, Vol. 2674, No. 8, pp. 710-719. https://doi.org/10.1177/0361198120919758
  13. Keating, P. B. and Fisher, J. W. (1986). Evaluation of fatigue tests and design criteria on welded details, NCHRP Report, No. 286, Transportation Research Board, Washington, D.C.
  14. Kim, J. H. and Song, J. H. (2019). "A comprehensive probabilistic model of traffic loads based on weigh-in-motion data for applications to bridge structures." KSCE Journal of Civil Engineering, KSCE, Vol. 23, No. 8, pp. 3628-3643. https://doi.org/10.1007/s12205-019-2432-9
  15. Korea Expressway Corporation (2019). Highway traffic statistics, Available at: https://kosis.kr/statHtml/statHtml.do?orgId=313& tblId=DT_EX008&conn_path=I2 (Accessed: March 7, 2019).
  16. Kwon, K. H. and Frangopol, D. M. (2010). "Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data." International Journal of Fatigue, Vol. 32, No. 8, pp. 1221-1232. https://doi.org/10.1016/j.ijfatigue.2010.01.002
  17. Liu, Y., Xiao, X. H., Lu, N. W. and Deng, Y. (2016). "Fatigue reliability assessment of orthotropic bridge decks under stochastic truck loading." Shock and Vibration, Vol. 2016.
  18. Lu, N. W. , Noori, M. and Liu, Y. (2017). "Fatigue reliability assessment of welded steel bridge decks under stochastic truck loads via machine learning." Journal of Bridge Engineering, Vol. 22, No. 1.
  19. Lu, N. W. , Liu, Y. and Deng, Y. (2019). "Fatigue reliability evaluation of orthotropic steel bridge decks based on site-specific weigh-in-motion measurements." International Journal of Steel Structures, Vol. 19, No. 1, pp. 181-192. https://doi.org/10.1007/s13296-018-0109-8
  20. Mao, J. X., Wang, H. and Li, J. (2019). "Fatigue reliability assessment of a long-span cable-stayed bridge based on one-year monitoring strain data." Journal of Bridge Engineering, Vol. 24, No. 1, 05018015. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001337
  21. Midas IT (2021). Midas civil 2021. Providence, RI: MIDAS Information Technology Corp.
  22. Miner, M. A. (1945). "Cumulative damage in fatigue." ASME Journal of Applied Mechanics, Vol. 12, No. 3, pp. 159-164. https://doi.org/10.1115/1.4009458
  23. Ministry of Land, Infrastructure and Transport (MOLIT) (2016). Korean highway bridge design code (limit state design method). Sejong-si (in Korean).
  24. Moses, F., Schilling, C. G. and Raju, K. S. (1987). Fatigue evaluation procesdures for steel bridges, NCHRP Report, No. 299, Transportation Research Board, Washington, D.C.
  25. Nyman, W. E. and Moses, F. (1985). "Calibration of bridge fatigue design-model." Journal of Structural Engineering, Vol. 111, No. 6, pp. 1251-1266. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:6(1251)
  26. Shin, D. K., Kwon, T. H. and Park, Y. S. (2007). "Reliability analysis of fatigue truck model using measured truck traffic statistics." Journal of Korean Society of Steel Construction, Vol. 19, No. 2, pp. 211-221 (in Korean).
  27. Sivakumar, B., Ghosn, M. and Moses, F. (2011). Protocols for collecting and using traffic data in bridge design, NCHRP Report, No. 683, Transportation Research Board, Washington, D.C.
  28. Wirsching, P. H. (1984). "Fatigue reliability for offshore structures." Journal of Structural Engineering, Vol. 110, No. 10, pp. 2340-2356. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:10(2340)
  29. Yan, D. H., Luo, Y., Lu, N. W., Yuan, M. and Beer, M. (2017a). "Fatigue stress spectra and reliability evaluation of short-to mediumspan bridges under stochastic and dynamic traffic loads." Journal of Bridge Engineering, Vol. 22, No. 12.
  30. Yan, D. H., Luo, Y., Yuan, M. and Lu, N. W. (2017b). "Lifetime fatigue reliability evaluation of short to medium span bridges under site-specific stochastic truck loading." Advances in Mechanical Engineering, Vol. 9, No. 3, pp. 1-12.