• Title/Summary/Keyword: finite deformation

Search Result 2,989, Processing Time 0.029 seconds

A Comparative Study on Formulation of Three-Dimensional Elastic-Plastic Finite Deformation Analysis for Prediction Large Deflection (강부재의 대변형 예측을 위한 3차원 탄소성 유한변위해석의 정식화에 대한 비교연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.53-61
    • /
    • 2006
  • In th is paper, to predicting the large deformation and cyclic plastic behavior of steel members under loading, 3-Dimensional elastic-plastic FE analysis method is developed by using finite deformation theory and proposed cyclic plasticity model. finite deformation theory, described the large deformation, is formulated by using Updated-lagrangian formulation and Green's strain tensor, Jaumann's derivative of Kirchoff stress. Also, cyclic plasticity model proposed by author is applied to developed analysis method. To verification of developed analysis method, analysis result of steel plate specimen compare to the analysis result using infinitesimal deformation theory and test result. Also, load-displacement and deflection shape, analysis result of pipe-section steel column, compare to test result. The good agreement between analysis result and experiment result shown that developed 3-dimensional finite element analysis can be predict the large deformation and cyclic plastic behavior of steel members.

  • PDF

Finite Element Analysis of Continuous Rotary-Die Equal Channel Angular Pressing (연속 회전 등통로각압축 공정의 유한요소해석)

  • Yoon, Seung-Chae;Seo, Min-Hong;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.524-528
    • /
    • 2006
  • Although equal channel angular pressing (ECAP), imposing large plastic shear strain deformation by moving a workpiece through two intersecting channels, is a promising severe plastic deformation method for grain refinement of metallic materials, its batch type characteristic makes ECAP inefficient for multiple-passing. Rotary-die ECAP (RDECAP) proposed by Nishida et al. can achieve high productivity by using continuous processing without taking out the samples from the channel. However, plastic deformation behavior during RD-ECAP has not been investigated. In this study, material plastic flow and strain hardening behavior of the workpiece during RD-ECAP was investigated using the finite element method. It was found that plastic deformation becomes inhomogeneous with the number of passes due to an end effect, which was not found seriously in ECAP. Especially, decreasing corner gap with increasing the number of passes was observed and explained by the strain hardening effect.

Finite Element Analysis of Half Channel Angular Extrusion (HCAE) as a New Severe Plastic Deformation Process (새로운 강소성 가공 공정으로서 Half Channel Angular Extrusion(HCAE)의 유한요소해석)

  • Kim, K.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.164-171
    • /
    • 2012
  • This paper focuses on the development of a new SPD (severe plastic deformation) process named HCAE (half channel angular extrusion). HCAE technology is based on principled similar to ECAE, but imposes a larger amount and more effective plastic deformation on materials. The amount of shear deformation can be altered by varying the process parameters. Finite element analyses of HCAE were conducted in order to investigate the characteristics of deformation during HCAE and the simulated results show that the predicted value of imposed plastic strain in a single pass reaches 2.5.

A Study on the Cam Ring Deformation in a Balanced Type Vane Pump (유압 베인 펌프의 캠 링 변형에 관한 연구)

  • 한동철;조명래;양광식;박제승
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.206-211
    • /
    • 1998
  • This paper presents the deformation characteristics of cam ring in a balanced type vane pump. Cam ring is operated in the condition of high pressure. Therefore the local deformation of cam ring affects the characteristics of compression, vane motion and noise and vibration. We analyzed the deformation of cam ring in three types by using the finite element method. As results of analysis, deformed shape of cam ring and the effects of deformation on the compression are presented.

  • PDF

Development of a Bellows Finite Element for the Analysis of Piping System (배관시스템 해석을 위한 벨로우즈 유한요소의 개발)

  • 고병갑;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1439-1450
    • /
    • 1995
  • Bellows is a familiar component in piping systems as it provides a relatively simple means of absorbing thermal expansion and providing system flexibility. In routine piping flexibility analysis by finite element methods, bellows is usually considered to be straight pipe runs modified by an appropriate flexibility factor; maximum stresses are evaluated using a corresponding stress concentration factor. The aim of this study is to develop a bellows finite element, which similarly includes more complex shell type deformation patterns. This element also does not require flexibility or stress factors, but evaluates more detailed deformation and stress patterns. The proposed bellows element is a 3-D, 2-noded line element, with three degrees of freedom per node and no bending. It is formulated by including additional 'internal' degrees of freedom to account for the deformation of the bellows corrugation; specifically a quarter toroidal section of the bellows, loaded by axial force, is considered and the shell type deformation of this is include by way of an approximating trigonometric series. The stiffness of each half bellows section may be found by minimising the potential energy of the section for a chosen deformation shape function. An experiment on the flexibility is performed to verify the reliability for bellows finite element.

Finite Element Analysis of Deformation Behavior due to Material Properties during ECAP (유한요소법을 이용한 ECAP 공정에서 재료의 물성치에 따른 변형 거동 분석)

  • 배강호;권기환;채수원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.827-832
    • /
    • 2001
  • A lot of investigations have been made in recent years on the equal channel angular pressing(ECAP) which produces ultra-fine grains(UFG). Among many process parameters such as channel angles, frictions, die deformations and materials employed, the effects of material properties on the deformation behavior have been investigated. The finite element method(FEM) has been used to investigate this issue.

  • PDF

Prediction of Deformation Texture Based on a Three-Dimensional Crystal Plasticity Finite Element Method (3차원 결정소성 유한요소해석을 통한 변형 집합조직 예측)

  • Jung, K.H.;Kim, D.K.;Im, Y.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.252-257
    • /
    • 2012
  • Crystallographic texture evolution during forming processes has a significant effect on the anisotropic flow behavior of crystalline material. In this study, a crystal plasticity finite element method (CPFEM), which incorporates the crystal plasticity constitutive law into a three-dimensional finite element method, was used to investigate texture evolution of a face-centered-cubic material - an aluminum alloy. A rate-dependent polycrystalline theory was fully implemented within an in-house program, CAMPform3D. Each integration point in the element was considered to be a polycrystalline aggregate consisting of a large number of grains, and the deformation of each grain in the aggregate was assumed to be the same as the macroscopic deformation of the aggregate. The texture evolution during three different deformation modes - uniaxial tension, uniaxial compression, and plane strain compression - was investigated in terms of pole figures and compared to experimental data available in the literature.

Densification Behavior of Titanium Alloy Powder Under Hot Pressing (고온 금형압축시 티타늄 합금 분말의 치밀화 거동)

  • Yang, Hun-Cheol;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3061-3071
    • /
    • 2000
  • Densification behavior of titanium alloy powder was investigated under hot pressing at various pressures and temperatures. Experimental date were obtained for densification of titanium alloy powder under an instantaneous loading and subsequent creep deformation during hot pressing. The constitutive models of Fleck et al. and the modified Gurson were employed for thermo-phastic deformation under the instantaneous loading and that f Abouaf and co-workers for creep deformation of titanium alloy powder during hot pressing. By implementing these constitutive equations into a finite element program(ABAQUS), finite element results were compared with experimental data during hot pressing. To investigate the effect of friction between the power and die wall, density distributions of power compacts were measured and compared with finite element calculations. Finite element results from the models of Fleck et al. and the modified Gurson agreed reasonably good with experimental data for densification and density distribution of titanium alloy powder under the instantaneous loading during hot pressing. Finite element results from the model of Abouaf and co-workers, however, somewhat overestimate experimental data for creep deformation of power compacts during hot pressing.

Prediction of Deformation Texture for FCC Metals Using the Finite Element Method (유한요소법을 이용한 면심입방정금속의 변형 집합조직 예측)

  • 권재욱;정효태;오규환;이동녕
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.229-242
    • /
    • 1994
  • An approximate procedure based on a combination micro-macroscopic theories of plasticity for predicting the crystallographic texture during the plane strain forming of fcc metals has been developed. This procedure is divided into two steps. Firstly, we extract the history of the deformation gradient at all deformed elements with a elasto-plastic finite element method using isotropic plasticity model. Secondly, we use this deformation gradient history to predict the crystallographic deformation texture based on the Bishop-Hill theory. Renouard and Wintenberger' method is chosen for selecting the active slip systems. The predicted results have been compared with reported experimental results. The calculated results are in good agreement with their results.

  • PDF

A Simplified Method to Predict the Weld-induced Deformation of Curved Plates (곡판의 용접변형 예측을 위한 간이 해석법)

  • Lee, Joo-Sung;Hoi, Nguyen Tan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.474-481
    • /
    • 2007
  • A three-dimensional finite element model has been used to simulate the bead on plate welding of curved steel plates having curvature in the welding direction. By using traditional method such as thermal-elastic-plastic(TEP) finite element analysis. the weld-induced deformation can be accurately predicted. However, three-dimensional finite element analysis is not practical in analyzing the weld-induced deformation of large and complex structures such as ship structures in view of computing time and cost. In this study, used is the equivalent loading method based on inherent strain to illustrate the effect of the longitudinal curvature upon the weld-induced deformation of curved plates.