• 제목/요약/키워드: fine particles

검색결과 1,657건 처리시간 0.025초

천안시 대기 입자 중 수용성 이온성분의 계절적 특성 및 요인분석을 통한 오염기여도 평가 (Characterization and source apportionment by factor analysis of water soluble ions in atmospheric particles in Cheonan, Korea)

  • 오세원
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.1020-1026
    • /
    • 2011
  • 천안시 대기 입자 중 수용성 이온성분의 특성을 분석한 결과, 양이온은 $Na^+$$NH_4^+$이, 음이온은 $NO_3^-$$SO_4^{2-}$이 조대입자와 미세입자에서 모두 주요한 이온성분으로 조사되었다. 분석된 수용성 이온성분의 농도는 미세입자가 조대입자보다 높은 농도로 나타났으며, 겨울과 봄철에 높은 농도를, 여름철에 가장 낮은 농도를 나타냈다. 총 수용성 이온 성분은 전체 입자의 질량 중 조대입자에서는 계절별로 봄 24.4%, 여름 33.2%, 가을 40.7%, 겨울 39.6%를, 미세입자에서는 각각 43.0%, 59.7%, 55.4%, 53.2%를 차지하는 것으로 분석되어, 조대입자 보다는 미세입자에서 차지하는 비율이 컸으며, 다른 계절보다는 봄철에 낮은 비율을 나타냈다. 이들 수용성 이온성분의 요인분석을 수행한 결과 조대입자는 2개의 요인이, 미세입자는 4개의 요인이 추출되었다. 이로부터 조대입자의 경우 자연적 배출원으로 부터의 기여가 70.03%로, 미세입자의 경우 인위적 배출원으로 부터의 기여가 66.01%로 추정되었다.

Size Distributions of Atmospheric Particles in Cheonan, Korea

  • Oh, Se-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제22권E1호
    • /
    • pp.45-48
    • /
    • 2006
  • Mass size distributions of atmospheric particles in Cheonan were determined using a high volume air sampler equipped with a 5-stage cascade impactor. Bimodal distributions that are typical for urban atmospheric particles were obtained. A MMD of the fine particle mode was $0.47{\pm}0.05{\mu}m$ with a GSD of $2.72{\pm}0.21$, and those of the coarse particles were $5.15{\pm}0.18{\mu}m\;and\;2.09{\pm}0.09$, respectively. The annual average concentrations of TSP, PM10, PM2.5, and PM1 were 74.1, 67.5, 54.2, and $42.3{\mu}g/m^3$, respectively. Although the daily PM10 concentrations were under the current National Standard, the daily PM2.5 concentrations frequently exceeded the US Standard even in non asian dust periods. The fractions of PM 10, PM2.5, and PM1 in TSP were $0.905{\pm}0.013,\;0.723{\pm}0.022,\;and\;0.572{\pm}0.029$, respectively, and fine mode particles occupied $57{\sim}72%$ of the total particle mass. The results indicate that fine particles were at the concerning level, and should be the target pollutant for the regional air quality strategy in Cheonan.

The influence of fine particle migration on pore structure of overlying ballast under cyclic loading

  • Yu Ding;Yu Jia;Zhongling Zong;Xuan Wang;Jiasheng Zhang;Min Ni
    • Geomechanics and Engineering
    • /
    • 제35권6호
    • /
    • pp.627-636
    • /
    • 2023
  • The essence of subgrade mud pumping under train load is the migration of fine particles in subgrade soil. The migration of fine particles will change the pore structure of overlying ballast, thus affecting the mechanical properties and hydraulic properties of ballast layer. It is of great theoretical significance and engineering value to study the effect of fine particle migration on the pore structure of ballast layer under cyclic loading. In this paper, a tailor-made subgrade mud pumping test model and an X-ray computed tomography (CT) scanning equipment were used to study the influence of migration of fine particles in subgrade soil on the pore parameters (plane porosity, volume porosity, pore distribution and pore connectivity) of overlying ballast under cyclic loading. The results show that the compression of ballast pores and the blockage of migrated fine particles make the porosity of ballast layer decreases gradually. And the percentage of small pores in ballast layer increases, while the percentage of large pores decreases; the connectivity of pores also gradually decreases. Based on the test results, an empirical model of ballast porosity evolution under cyclic loading is established and verified.

전기집진기형 공기청정기의 미세 먼지 저감 특성에 관한 연구 (Characteristics of the Reduction of Fine Particles in an Indoor Air Cleaner Using Electrostatic Precipitation Technique)

  • 목영선;이호원
    • 한국산업융합학회 논문집
    • /
    • 제7권1호
    • /
    • pp.115-120
    • /
    • 2004
  • An indoor air cleaner consisting of a dielectric barrier discharge system and an electrostatic precipitator (ESP) was experimentally investigated. The function of the dielectric barrier discharge is to precharge particles by producing nonthermal plasma before indoor air enters ESP, leading to an enhancement in dust collection efficiency. The dependence of particle size distribution on the plasma discharge was examined to understand the mechanism of the particle precharging. The plasma discharge was found to increase the electrical force of the particles, rather than agglomerate them. Coarse particles in the range of 0.5 to $5.0{\mu}m$ were observed to be easily collected by this indoor air cleaner, and the present study laid emphasis on the removal of fine particles of $0.3{\mu}m$. The collection efficiency of the fine particles was largely enhanced by the plasma discharge.

  • PDF

초임계수를 이용한 금속산화물 미세입자 제조 (Production of Fine Metal Oxide Particles in Supercritical Water)

  • 이주헌;박영우
    • 공업화학
    • /
    • 제10권1호
    • /
    • pp.173-176
    • /
    • 1999
  • 초임계수를 이용한 금속산화물의 미세입자 제조에 대하여 연구하였다. 금속염 수용액으로는 cobalt nitrate solution과 manganese nitrate solution을 sample solution으로 선택하여 코발트산화물과 망간산화물 입자를 제조하였다. 얻어진 결과로부터 초임계수를 이용한 금속산화물 미세입자의 제조가 가능함을 확인할 수 있었으며, 초임계수 하에서는 매우 빠른 dehydration반응이 일어남을 관찰할 수 있었다. 짧은 반응시간(30~100 초)에도 불구하고 미세입자 ($0.5{\sim}2{\mu}m$)가 생성되었으며, 초임계수 공정에서는 mixer의 온도가 입자의 크기 및 분포에 큰 영향을 미침을 알 수 있었다. 반응온도 조절을 통하여 입자의 크기를 제어할 수 있음을 확인할 수 있었다.

  • PDF

大氣浮游粒子狀物質中 Benzo(a) pyrene 濃度에 關한 硏究 (Studies on Benzo(a) pyrene Concentrations in Atmospheric Particulate Matters)

  • 손동헌;허문영;남궁용
    • 한국대기환경학회지
    • /
    • 제3권2호
    • /
    • pp.11-17
    • /
    • 1987
  • Atmospheric particulate matter (A.P.M.) was collected on quartz fiber filters from March 1985 to February 1986 at Chung-Ang University according to particle size using Andersen high-volume air smapler, and benzo (a) pyrene concentration in these particulates were analyzed by high performance liquid chromatography. The annual arithmetic mean concentration of A.P.M. was 115.50$\mug/m^3$. The annual arithmetic mean concentrations of coarse particles and fine particles in A.P.M. were 52.54$\mum/m^3$ and 62.96$\mum/m^3$ respectively. THe annual arithmetic mean concentration of benzo(a)pyrene in A.P.M. was 1.44$ng/m^3$. THe annual arithmetic mean concentrations of benzo(a)pyrene in coarse particles and fine particles were 0.05 $ng/m^3$ and 1.39 $ng/m^3$ respectively. Thus, the concentration of benzo(a)pyrene showed maldistribution of 96.53% in fine particle. A.P.M. showed wide fluctuation according to the season. The concentration of A.P.M. was lowest in summer and high in spring and winter. Coarse and fine particle concentrations in A.P.M. were highest in spring and winter, respectively. The concentrations of benzo(a)pyrene was highest in winter and lowest in summer. The concentrations of benzo(a)pyrene in fine and coarse particles were highest in winter and spring, respectively.

  • PDF

미세먼지 분석 서비스를 위한 NoSQL 기반 센서 웹 시스템 (NoSQL-based Sensor Web System for Fine Particles Analysis Services)

  • 김정준;곽광진;박정민
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.119-125
    • /
    • 2019
  • 최근 미세먼지로 인한 문제가 대두되고 있다. 마스크 착용 및 기상 경보가 발령하게 되면서 많은 관심을 받고 있으며 미세먼지의 원인과 절감 방안 등에 대한 연구와 정책 등이 활발하게 벌어지고 있으나 연구결과는 다양하게 나타나고 있다. 기상학적으로 미세먼지로 인한 피해가 가장 큰 경우는 기온역전이 함께 발생하는 경우이다. 본 연구에서는 기온역전과 풍향 등을 함께 분석하여 미세먼지를 사전에 경고할 수 있는 시스템을 구상하였다. 이러한 기상정보 시스템은 다양한 센서 정보를 센서 제어 및 데이터 교환 등을 위해 OGC Sensor Web Enablement(SWE)를 따르는 시스템과 NoSQL 스토리지를 사용하여 확장성과 병렬 처리성을 높이는 시스템을 제안한다.

레이저 선택적 증착을 통한 이방특성의 소수성 표면처리 (Hydrophobic Surface Treatment with Anisotropic Characteristics Using Laser Selective Deposition)

  • 김지훈;권예지;양훈석;김주한
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.109-115
    • /
    • 2020
  • Surfaces with various roughnesses were produced through laser processing, and the anisotropy and hydrophobicity of the surfaces were examined in the context of the microstructures. The fine particles transferred to the glass surface exhibited different sizes, and the roughness increased. Due to the change in the roughness, the liquid could not penetrate the space between the fine particles, and it was thus exposed to the air. We analyzed this phenomenon using the combined Wenzel and Cassie-Baxter models. Excessive fine particle formation on the substrate tended to increase the roughness and surface energy. The silver-glass-air contact analysis could clarify the mechanism of the reduction of the contact angle and differences in the metastable and stable states when the particles did not completely cover the glass substrate. The formation of microstructures with fine particles through the laser selective deposition led to the generation of an anisotropic surface as the water droplets diffused toward the glass substrate with a relatively high surface energy level.

Evaluation of temperature effects on brake wear particles using clustered heatmaps

  • Shin, Jihoon;Yim, Inhyeok;Kwon, Soon-Bark;Park, Sechan;Kim, Min-soo;Cha, YoonKyung
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.680-689
    • /
    • 2019
  • Temperature effects on the generation of brake wear particles from railway vehicles were generated, with a particular focus on the generation of ultrafine particles. A real scale brake dynamometer test was repeated five times under low and high initial temperatures of brake discs, respectively, to obtain generalized results. Size distributions and temporal patterns of wear particles were analyzed through visualization using clustered heatmaps. Our results indicate that high initial temperature conditions promote the generation of ultrafine particles. While particle concentration peaked within the range of fine sized particles under both low and high initial temperature, an additional peak occurred within the range of ultrafine sized particles only under high initial temperature. The timing of peak occurrence also differed between low and high initial temperature conditions. Under low initial temperature fine sized particles were generated intensively at the latter end of braking, whereas under high initial temperature both fine and ultrafine particles were generated more dispersedly along the braking period. The clustered correlation heatmap divided particle sizes into two groups, within which generation timing and concentration of particles were similar. The cut-off point between the two groups was approximately 100 nm, confirming that the governing mechanisms for the generation of fine particles and ultrafine particles are different.