• Title/Summary/Keyword: fine grained

Search Result 712, Processing Time 0.027 seconds

Estimation of Specific Gravity of Soil Mixture (배합비에 따른 혼합토의 비중 산정)

  • Shin, Hyun-Young;Kim, Kyoung-O;Kim, You-Seok;Park, Jin-Yoo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.951-954
    • /
    • 2010
  • There are lots of soft ground improvement methods which is consist of different materials. In the analysis and design, composite ground method is usually regarded. Composite ground method considers the area replacement ratio as a key parameter to combine the physical and mechanical characteristics of tow different material. In this study, using composite material consist of three different materials which have different diameters, series of specific gravity test were performed according to KS F 2308, to investigate the applicability of composite ground method. As a result, it is found that composite material which is consist of fine grained soil and granular soil has a high applicability of composite ground method. This result means that, in estimating of ground properties of composite material which is consist of similar fine grained material such as cement mixing etc., composite ground method has a less applicability.

  • PDF

A Fine-grained Localization Scheme Using A Mobile Beacon Node for Wireless Sensor Networks

  • Liu, Kezhong;Xiong, Ji
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.147-162
    • /
    • 2010
  • In this paper, we present a fine-grained localization algorithm for wireless sensor networks using a mobile beacon node. The algorithm is based on distance measurement using RSSI. The beacon node is equipped with a GPS sender and RF (radio frequency) transmitter. Each stationary sensor node is equipped with a RF. The beacon node periodically broadcasts its location information, and stationary sensor nodes perceive their positions as beacon points. A sensor node's location is computed by measuring the distance to the beacon point using RSSI. Our proposed localization scheme is evaluated using OPNET 8.1 and compared with Ssu's and Yu's localization schemes. The results show that our localization scheme outperforms the other two schemes in terms of energy efficiency (overhead) and accuracy.

Development of Equation of the Soil-Water Characteristic Curve for an Unsaturated Soil (불포화의 흙-수분 특성곡선 방정식의 개발)

  • Song, Chang-Seob;Lim, Seong-Yoon;Kim, Myung-Hwan
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.191-194
    • /
    • 2003
  • The purpose of this paper was to derive soil-water characteristic curve equation for unsaturated soil. To this end, a series of suction measured test was conducted on the selected 4 kinds of soil which is located in Korea, used the modified pressure plate apparatus. From the test results, it was proved that characteristic curve changes according to grain size distribution, size of void and fine grained soil contents. Residual degree of saturation(Sr) was decreased with void ratio and changed with fine grained soil contents, parameter ${\lambda}$ and hr was increased with void ratio. Soil-water characteristic curve equation based on the test result was suggested by void ratio or grain size distribution.

  • PDF

Microstructure and Tensile Properties of Ultrafine Grain Pure-Titanium (초미세립 순-타이타늄의 미세조직과 인장물성)

  • Ko, Y.G.;Ahn, J.Y.;Shin, D.H.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.215-218
    • /
    • 2006
  • A study was made to investigate microstructural evolution and mechanical properties of ultra-fine grained (UFG) pure-Ti produced by equal channel angular (ECA) pressings. The deformed structures were analyzed by finite element method and transmission electron microscopy with the increment of straining. After 4 isothermal ECA pressings, initial coarse grains ($30{\mu}m$) were significantly refined to ${\sim}0.3{\mu}m$ with homogeneous distribution of microstructure which was resulted from $180^{\circ}$ rotation of the sample between pressings. UFG pure-Ti exhibited the considerable improvement in yield strength while losing strain hardening capacity as compared to coarse grained microstructure at ambient temperature, which was mainly attributed to ultra-fine grain microstructure with non-equilibrium grain boundaries.

  • PDF

Estimation of Generalized Soil-Water Characteristic Curves Using Liquid Limit State (액성한계상태를 이용한 흙-수분 특성곡선의 평가)

  • Sung, Sang-Gyu;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.146-153
    • /
    • 2004
  • The goals of this study are to investigate the feasibility of the reference state approach in determining the generalized soil-water characteristic curve that is essential for characterization of unsaturated soil behavior. The soil-water characteristic curves are obtained from a number of specimens of fine-grained residual soils compacted with different void ratios. Based on the experimental test results, the feasibility of using the liquid limit state as the reference state for predicting the soil-water characteristic curve are verified. Finally, through the regression analysis of experimental data using the equation of Fredlund and Xing (1994), a reliable method is proposed to predict the generalized soil-water characteristic curve of fine-grained residual soils using the liquid limit state as the reference.

  • PDF

Fabrication and Properties of Photoconductive Multilayer Using Se and $Sb_2S_3$ (Se와 $Sb_2S_3$를 이용한 광도전막의 제작과 그 특성)

  • 오상광;박기철;김건일;김기완
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.646-651
    • /
    • 1987
  • The photoconductive multilayer composed of glassy, porous, and fine-grained layers was fabdricated with Se and Sb2S3 by vacuum evaporation in order to be used as vidicon target. And its electrical, optical properties were investigatee. The fabrication conditions were as follow: the glassy layer was first deposited to have the thickness of 6500 \ulcornerat the deposition rate of 250\ulcornersec. High photosensitivity(\ulcorner=1) was obtained but its shortcoming was high dielectric constant. Therefore, the porous layer was added to lower dielectric constant and had 7500\ulcornerthick in the argon gas ambikent of 7x10-\ulcorner And the fine-grained layer was formed to prevent secondary electron emission and obtain good resolution. Its thickness was about 1700\ulcorner For the given vidicon target, the light transfer characteristic, that is, photosensitivity (\ulcorner) was measured to be 0.8 at the applied voltage of 25V. The spectral sensitivity was quite similar to that of the human eyes.

  • PDF

Microstructure Evolution of UFG Steel Weld by Hybrid and Laser Welding (하이브리드 용접과 레이저 용접에 의한 세립강 용접부의 미세조직변화에 관한 연구)

  • Dong, H.W.;Lee, M.Y.;Ahn, Y.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.58-63
    • /
    • 2010
  • A laser beam welding and an electric arc welding were combined, and the positive points of each welding method are drawn such as high speed, low thermal load, deep penetration, and high productivity. The fiber laser-MIG conjugated welding. namely the hybrid welding has been studied mainly for the automation industry of a pipeline welding. In this study, the MIG welding was combined with a fiber laser welding to make up the hybrid welding. The weld shapes, microstructures and mechanical properties for weld zones after the hybrid welding or only fiber laser welding were investigated on the 700 MPa grade Ultra Fine Grained(UFG) high strength steel. The amount of acicular ferrite in weld metals and HAZ(heat affected zone) was observed larger after hybrid welding compared with after only laser welding. The Vickers hardness of the top area of the fusion zone after fiber laser welding was higher compared with after hybrid welding.

Ultra-fine Grained and Dispersion-strengthened Titanium Materials Manufactured by Spark Plasma Sintering

  • Handtrack, Dirk;Sauer, Christa;Kieback, Bernd
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.725-726
    • /
    • 2006
  • Ultra-fine grained and dispersion-strengthened titanium materials (Ti-Si, Ti-C, Ti-Si-C) have been produced by high energy ball milling and spark plasma sintering (SPS). Silicon or/and carbon were milled together with the titanium powder to form nanometer-sized and homogeneously distributed titanium silicides or/and carbides as dispersoids, that should prevent grain coarsening during the SPS compaction and contribute to strengthening of the material. The microstructures and the mechanical properties showed that strength, hardness and wear resistance of the sintered materials have been significantly improved by the mechanisms of grain refinement and dispersion strengthening. The use of an organic fluid as carrier of the dispersoid forming elements caused a significant increase in ductility.

  • PDF

Densification and Thermo-Mechanical Properties of Al2O3-ZrO2(Y2O3) Composites

  • Kim, Hee-Seung;Seo, Mi-Young;Kim, Ik-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.515-518
    • /
    • 2006
  • The microstructure of $ZrO_2$ toughened $Al_2O_3$ ceramics was carefully controlled so as to obtain dense and fine-grained ceramics, thereby improving the properties and reliability of the ceramics for capillary applications in semiconductor bonding technology. $Al_2O_3-ZrO_2(Y_2O_3)$ composite was produced via Ceramic Injection Molding (CIM) technology, followed by Sinter-HIP process. Room temperature strength, hardness, Young's modulus, thermal expansion coefficient and toughness were determined, as well as surface strengthening induced by the fine grained homogenous microstructure and the thermal treatment. The changes in alumina/zirconia grain size, sintering condition and HIP treatment were found to be correlated.

Effect of Cr2O3 Content on Densification and Microstructural Evolution of the Al2O3-Polycrystalline and Its Correlation with Toughness

  • Seo, Mi-Young;Kim, Hee-Seung;Kim, Ik-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.469-471
    • /
    • 2006
  • The effects of $Cr_2O_3$ on the microstructural evolution and mechanical properties of $Al_2O_3$ polycrystalline were investigated. The microstructure of $Al_2O_3-Cr_2O_3$ composites (ruby) was carefully controlled in order to obtain dense and fine-grained ceramics, thereby improving their properties and reliability with respect to numerous applications related to semiconductor bonding technology. Ruby composites were produced by Ceramic Injection Molding (CIM) technology. Room temperature strength, hardness, Young's modulus and toughness were determined, as well as surface strengthening induced by thermal treatment and production of a fine-grained homogenous microstructure.