• Title/Summary/Keyword: fine alignment

Search Result 58, Processing Time 0.031 seconds

A Study on the Alignment of Aiming Sight Unit for Infrared Homing Missile (적외선 호밍 유도탄의 조준축 정렬에 관한 연구)

  • Jung Young-Sook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.30-37
    • /
    • 2004
  • For a proper operation of portable air defense IR terminal homing missile to the rapid intruding target, the boresight of an IR seeker of the missile should be accurately aligned with the gunner's aiming sight. Before a gunner fires the missile, he tries to keep the target within the circle of ASU ensuring the seeker to lock on the target correctly. In this paper, using an electrical seeker caging loop and IR detector signal characteristics, a precise aligning method between the seeker boresight and the LOS(Line of Sight) of ASU(Aiming Sight Unit) was studied. Although every seeker has slightly different SLA (Signal of Look Angle) output, we can get negligible alignment error through a fine tuning method of electrical caging signal. This alignment procedure was also adopted in K-PSAM system.

Bistable Liquid Crystal Device Realized on Microscopic Orientational Pattern

  • Kim, Jong-Hyun;Yoneya, Makoto;Yokoyama, Hiroshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.187-190
    • /
    • 2005
  • Alignment pattern of checkerboard was constructed by the stylus of atomic force microscope. Orientational bistability of the nematic liquid crystal was realized on that frustrated surface alignment. Macroscopic orientational switching between two perpendicular directions took place by an appropriate in-plane electric field. The threshold electric fields decreased in both switching directions as temperature increased. The focused laser heated up only the limited domains in the cell including a light-absorbing medium. Irradiating the laser concurrently with an appropriate electric field, we switched the selected unit domains in the alignment pattern. The switched domains maintained stably the switched direction without the disturbance from the exterior. Extending and repeating this process, we realized extremely fine devices of bistable switching.

  • PDF

Efficient Translational Motion Compensation for Micro-Doppler Extraction of Ballistic Missiles

  • Jung, Joo-Ho;Kim, Si-Ho;Choi, In-O;Kim, Kyung-Tae;Park, Sang-Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.129-137
    • /
    • 2017
  • When the micro-Doppler (MD) image of a ballistic missile is derived, the translational motion compensation (TMC) method is usually applied to the inverse synthetic aperture radar (ISAR) image, but yields poor results because of the micro-motion of the ballistic missile. This paper proposes an efficient TMC method to obtain a focused MD image of a ballistic missile engaged in complicated micro-motion. During range alignment, range profiles (RPs) are coarsely aligned by using the 1D entropy cost function of RPs as a mark, then the coarsely-aligned RPs are fine-aligned by using the minimum 2D entropy of the MD image. During phase adjustment, the gradient of the phase error is appropriately weighted and added to the previous phase error to further fine-tune the aligned RPs. In simulations using the point scatterer model and the measured data from the real missile model, the proposed method provided better image focus than the existing method.

Development of Proximity Exposure System with Vertical Structure for Plasama Display Panel (PDP용 수직형 구조의 근접 노광장치 개발)

  • Park, Jeong-Gyu;Jeong, Su-Hwa;Lee, Hang-Bu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2371-2380
    • /
    • 2000
  • In this paper, we developed the proximity exposure system with the vertical structure of glass and mask stage to minimize the mask's warp caused by the pull of gravity. This system, which canirradiate the ultra violet through 1440 H 850 $\textrm{mm}^2$ and 1330X 1015 $\textrm{mm}^2$ exposure area, has the followingcharacteristics. The glass stage can be inclined by 80 degrees at vertical structure to load substrate withsafety on it. When the glass stage is the vertical state, the gap control, alignment control and exposureof ultra violet are executed. So, it enhances the pattern uniformity by minimizing the mask's warp. Theglass stage can also control the gap between the mask and the substrate by the coarse and fine motioncontrol. The mask stage can adjust the posture of photomask to the position of substrate by imageprecessing method. The galss stage for the gap control and the mask stage for the alignment aredesigned independently for each function.

Fiber Optics for Multilayered Optical Memory

  • Kawata, Yoshimasa;Tsuji, Masatoshi;Inami, Wataru
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • We have developed a compact and high-power mode-locked fiber laser for multilayered optical memory. Fiber lasers have the potential to be compact and stable light sources that can replace bulk solid-state lasers. To generate high-power pulses, we used stretched-pulse mode locking. The average power and pulse width of the output pulse from the fiber laser that we developed were 109 mW and 2.1 ps, respectively. The dispersion of the output pulse was compensated with an external single-mode fiber of 2.5 m length. The pulse was compressed from 2.1 ps to 93 fs by dispersion compensation. The fiber laser we have developed is possible to use as a light source of multilayered optical memory. We also present a fiber confocal microscope as an alignment-free readout system of multilayered optical memories. The fiber confocal microscope does not require fine pinhole position alignment because the fiber core is used as the point light source and the pinhole, and both of which are always located at the conjugated point. The configuration reduces the required accuracy of pinhole position alignment. With these techniques we can present an all-fiber recording and readout system for multilayered memories.

Development of Seesaw-Type CSP Solder Ball Loader (CSP용 시소타입 로딩장치의 개발)

  • Lee, J.H.;Koo, H.M.;Woo, Y.H.;Lee, C.W.;Shin, Y.E.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.873-878
    • /
    • 2000
  • Semiconductor packaging technology is changed rapidly according to the trends of the micro miniaturization of multimedia and information equipment. For I/O limitation and fine pitch limitation, DIP and SOP/QFP are replaced by BGA/CSP. This is one of the surface mount technology(SMT). Solder ball is bumped n the die pad and connected onto mounting board. In ball bump formation, vacuum suction type ball alignment process is widely used, However this type has some problems such as ionization, static electricity and difficulty of fifo(first-input first-out) of solder balls. Seesaw type is reducing these problems and has a structural simplicity and economic efficiency. Ball cartridge velocity and ball aligned plate angle are Important variables to improve the ball alignment Process. In this paper, seesaw-type CSP solder ball loader is developed and the optimal velocity and plate angle are proposed.

  • PDF

Reconstruction of Neural Circuits Using Serial Block-Face Scanning Electron Microscopy

  • Kim, Gyu Hyun;Lee, Sang-Hoon;Lee, Kea Joo
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.100-104
    • /
    • 2016
  • Electron microscopy is currently the only available technique with a spatial resolution sufficient to identify fine neuronal processes and synaptic structures in densely packed neuropil. For large-scale volume reconstruction of neuronal connectivity, serial block-face scanning electron microscopy allows us to acquire thousands of serial images in an automated fashion and reconstruct neural circuits faster by reducing the alignment task. Here we introduce the whole reconstruction procedure of synaptic network in the rat hippocampal CA1 area and discuss technical issues to be resolved for improving image quality and segmentation. Compared to the serial section transmission electron microscopy, serial block-face scanning electron microscopy produced much reliable three-dimensional data sets and accelerated reconstruction by reducing the need of alignment and distortion adjustment. This approach will generate invaluable information on organizational features of our connectomes as well as diverse neurological disorders caused by synaptic impairments.

Design of a Cylindrical Flexure Jointed Stewart Platform for Aligning the Condenser in an X-ray Microscope

  • Kang Sung-Hoon;Kang Dong-Woo;Gweon Dae-Gab;Yoon Gwon-Ha;Min Jin-Young
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.60-65
    • /
    • 2006
  • This paper proposes a new type of six degree-of-freedom fine positioner that can be used to align the condenser in X-ray microscopy precisely. The new concept was based on the requirements for an X-ray microscope. A proposed modeling method was used to obtain an optimal design, which was verified with a finite element analysis. The fine positioner was then constructed and an experiment was used to validate its performance.

Precise Measurement of Ultra Small Retardation of Rubbed Polyimide Alignment Layer Using an Improved Transmission Ellipsometer (개선된 투과형 타원계를 사용한 러빙된 Polyimide 배향막의 초미세 위상지연 정밀 측정)

  • Lyum, Kyoung Hun;Park, Sang Uk;Yang, Seong Mo;Yoon, Hee Kyu;Kim, Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.2
    • /
    • pp.77-85
    • /
    • 2013
  • The precision of retardation measurement has been improved upto $3{\sigma}$ <0.005 nm after improvements are made to the conventional transmission ellipsometer. Improvements are made such that, i) the polarizer module instead of the sample stage is rotated, ii) the light source is replaced, iii) the starting points of two rotating modules are accurately synchronized, and iv) the fine background retardation is compensated. Together with the newly introduced RVD (Retardation Vector Difference) method, the improved instrument is successfully applied to characterize the ultra small optical birefringence of the rubbed polyimide alignment layer, after the residual retardation due to glass substrate whose magnitude is about 1.0 nm is properly subtracted. It is verified that the net retardation of the alignment layer ranges from 0.05 nm to 0.15 nm.

Development of Roll-to-Roll Printing System for Fine Line-width Printing (미세 선폭 프린팅을 위한 롤투롤 장비 개발)

  • Kim C.H.;Ryu B.S.;Lim K.J.;Lee M.H.;Lee T.M.;Youn S.N.;Choi B.O.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.583-584
    • /
    • 2006
  • Printing technology has begun to get into the spotlight in many ways due to the low cost effectiveness to existent semi-conductor process. It also has very useful application areas, not only paper printing but also patterning for LCD color tilter, Photovoltaic patterning, RFID antenna, OLED, and so on. In this study, an apparatus of gravure offset printing was developed for fine line width printing. The pattern was composed of $20{\mu}m$ size of continuous lines of which pitch size was $40{\mu}m$. The printed pattern shows that it is possible to make around $20{\mu}m$ line-width printing pattern. The roll-to-roll printing system for fine line-width printing based on primary experiment is presented. For testing of multi-layer printing, the system was designed to be capable of printing two different materials from each printing unit using gravure-offset printing method and have a function of alignment of two printed materials.

  • PDF